
INFRASTRUCTURE FOR

AVF MODELING

MARK WILKENING

JUNE 14, 2015

| INFRASTRUCTURE FOR AVF MODELING | JUNE 14, 20152

OVERVIEW

� Motivation

� Architectural Vulnerability Factors

‒ Program Vulnerability Factor

‒ Hardware Vulnerability Factor

‒ Spatial Multi-bit Architectural Vulnerability Factor

� Infrastructure for AVF Measurement

‒ Infrastructure Overview

‒ API Overview

| INFRASTRUCTURE FOR AVF MODELING | JUNE 14, 20153

MOTIVATION

� Reliability is a major constraint in the design of microprocessors

� Transient faults are a primary concern in designing reliable microprocessors

‒ These faults occur when a particle strike deposits enough charge to flip state in

storage elements

� Microprocessor vendors set a failure rate (FIT) target and perform significant

analysis to efficiently design for and validate against this target

‒ Pre-RTL

‒ Architectural Vulnerability Analysis

‒ Pre-Silicon

‒ Statistical Fault Injection

‒ Post-Silicon

‒ Particle Beam Testing

MICROPROCESSOR RELIABILITY AND TRANSIENT FAULTS

Architectural

Vulnerability Factors

| INFRASTRUCTURE FOR AVF MODELING | JUNE 14, 20155

ARCHITECTURAL VULNERABILITY FACTORS (AVF)

� Not all faults (bit flips) become errors (incorrect program output)

� The Architectural Vulnerability Factor (AVF) of a hardware structure is defined

as the probability that a fault in the structure becomes an error

� AVF can be conservatively estimated through ACE Analysis

‒ Determines during each cycle which bits are required for Architecturally Correct

Execution (ACE)

‒ Multiple variants of AVF for multiple structures can be estimated during a single fault-

free simulation run

‒ Well suited to early stage (pre-RTL) design exploration

‒ Much faster than software fault injection

[MUKHERJEE03]

AVFH =

ACE bits in H at cycle n
n =0

N

∑

BH × N BH: Size in bits

N: Number of cycles

| INFRASTRUCTURE FOR AVF MODELING | JUNE 14, 20156

ARCHITECTURAL VULNERABILITY FACTORS CONT.

� Faults which do not propagate into errors are called masked

� Faults can become masked at many different levels in a system

‒ Device level masking

‒ Circuit level timing

‒ Microarchitecture level masking (Hardware Vulnerability Factor)

‒ Register lifetimes

‒ Performance enhancing state (branch prediction tables)

‒ Architecture level masking (Program Vulnerability Factor)

‒ Dynamically dead state

‒ Logically masked state

‒ Application level masking

‒ Approximately correct state

� AVF considers both microarchitectural and architectural masking

‒ AVF = HVF x PVF

HARDWARE VULNERABILITY FACTORS AND PROGRAM VULNERABILITY FACTORS

[SRIDHARAN09, SRIDHARAN10]

| INFRASTRUCTURE FOR AVF MODELING | JUNE 14, 20157

ARCHITECTURAL VULNERABILITY FACTORS CONT.

� As process technology scales downward it becomes more likely a single particle

strike will simultaneously flip multiple bits

‒ This is known as a spatial multi-bit transient fault

� The effects of spatial multi-bit faults are non-trivial, and spatial multi-bit AVF

(MBAVF) can vary significantly from single-bit AVF

� MBAVF can give insight into reliability behavior involving

‒ Various multi-bit patterns (fault modes)

‒ Different interleaving schemes and error correcting codes

‒ Both microarchitectural and architectural masking

SPATIAL MULTI-BIT ARCHITECTURAL VULNERABILITY FACTORS

[WILKENING14]

0 0 1 0 1 1

Single-bit Fault Multi-bit Fault

Infrastructure for

AVF Measurement

| INFRASTRUCTURE FOR AVF MODELING | JUNE 14, 20159

INFRASTRUCTURE FOR AVF MEASUREMENT

Reliability

Structure

Reliability

Structure

Reliability

Structure

Analysis WindowInstructions

R/W Events

PVF

HVF

AVF Infrastructuregem5AVF Instruction wrapper

interfaces with gem5

dynamic instructions

Reliability Structure APIs

interface AVF models with

gem5 structure models

Analysis Window performs

dataflow analysis on dynamic

instruction stream for dynamic

deadness and logical masking

Reliability structures perform

lifetime analysis, and model

multi-bit modes and

protection schemes

| INFRASTRUCTURE FOR AVF MODELING | JUNE 14, 201510

INFRASTRUCTURE FOR AVF MEASUREMENT

� Register committed instructions

‒ PostCommitBuffer->insert(

instruction, // dynamic instruction

curTick()) // commit cycle

� Register read and write events to modeled state

‒ Pass cycle, identifying information for associated instruction, location in modeled

structure, and associated architectural state

‒ CPURegisterFile->read_with_association(

curTick(), // current cycle

device_id, context_id, thread_id, dynamic_id, // instruction identifiers

2, true, 3, // info needed for variable length arguments

reg_num, byte, // register #, byte – physical register location

thread_id, reg_num, byte) // thread, register #, byte – architectural state

API OVERVIEW

Questions?

| INFRASTRUCTURE FOR AVF MODELING | JUNE 14, 201512

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and

typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to

product and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences

between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or

otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to

time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR

ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO

EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM

THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2013 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of

Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be

trademarks of their respective owners.

