
University of Michigan

Electrical Engineering and Computer Science

Performance Prediction Models

Shruti Padmanabha, Andrew Lukefahr,

Reetuparna Das, Scott Mahlke
{shrupad,lukefahr,reetudas,mahlke}@umich.edu

Gem5 workshop

Micro 2012

December 2, 2012

University of Michigan

Electrical Engineering and Computer Science
2

ÅPushing heterogeneity into a core

ÅA tightly coupled o3 backend (big)
and an inorder one (little)
ïBig ï 3 wide OoO with large ROB,

LSQ

ïLittle ï 2 wide inorder, modeled as a
OoO core with simplified pipeline,
small ROB, no LSQ

ÅSwitch at fine granularity or
quantum (controller)

Composite Cores

Big

Little Little

For more details, please attend the paper presentation on Tuesday

Feedback

controller

University of Michigan

Electrical Engineering and Computer Science
3

Operation of Composite Cores

Little

backend Big

backend

quantum

Active!

Controller ï ñRun on bigò

Compare

CPI = 2.33

CPI = ???

Controller

CPI = ???

Instructions

University of Michigan

Electrical Engineering and Computer Science
4

Objectives

ÅRun a quantum on one backend microarchitecture
and project its performance on a different one
dynamically

ÅChallenge: Only one is active at any given time

ÅSolution: Use a linear model to calculate the
inactive coreôs performance using the sliceôs
computational traits

ώ ὥ ὥὼ

University of Michigan

Electrical Engineering and Computer Science
5

Performance defining factors

Computational trait Big Little Rel Performance

Diff

Independent chain of

instructions (high ILP)

Exploits larger

superscalar width

Lower throughput High

Dependent chain of instructions

(low ILP)

Issues in order Issues in order Low

Branch mispredictions Large drain time Smaller drain time High

Independent chain of L2 misses

(high MLP)

Can have multiple

outstanding loads

Stalls High

Dependent chain on L2 misses

(low MLP)

Stalls Stalls Low

Icache misses Stalls Stalls Low

University of Michigan

Electrical Engineering and Computer Science
6

ÅPer program slice, dynamically track

ïActive CPI

ï# of Branch misses

ï# of L1 misses

ï# of L2 misses

ï# of Icache misses

ïILP

ïMLP

ÅAppend dynamic instruction class with fields that
identify above parameters

Performance defining Counters

University of Michigan

Electrical Engineering and Computer Science
7

ÅBranch misses:

ïSet flag on branch mispredict discovery in iew_impl.hh

ÅCache level:

ïAppend the Packet class with a field to track the level of
cache that satisfied request

ïSet field on packet return, in lsq_unit_impl.hh

Performance counters example

lsq_unit_impl.hh

handleResponse(pkt):

 target->pkt->cachelevel =

pkt->cachelevel

cache_impl.hh

access(pkt):

 L2?

 Yes

 pkt->cachelevel = L2

cache_impl.hh

access(pkt):

 L1?

 No, forward pkt

cache_impl.hh

writeback(inst, pkt):

 inst->cachelevel =

 pkt->cachelevel

University of Michigan

Electrical Engineering and Computer Science
8

Measuring ILP & MLP ð Big backend

While on big,

ÅMeasure of ILP in a quantum:

ïTrack # of instructions that are

stalled due to dependencies in

inst_queue_impl.hh

ÅMeasure of MLP in a quantum:

ïTrack # of MSHR entries in use

at each L1 cache miss

quantum

Big

Insts that

could issue

in parallel

(max ILP)

Mem refs that

could issue

in parallel

(max MLP)

