
© 2017 Arm Limited

What is gem5 and
where do I get it?

Andreas Sandberg & Nikos Nikoleris

ARM Research

© 2017 Arm Limited 4

Why gem5?

Runs real workloads

• Runs complex workloads like Android & ChromeOS

System-level insights

• Device interactions (storage, NICs, …)

• OS interactions like PA fragmentation

Can be wired to custom models

• Add detail where it matters, when it matters!

Rapid early prototyping

• Parameterized models enable
rapid design space exploration

Large user base in industry & academia

Ubuntu (Linux 4.x) Android Nougat

But not a microarchitectural
model out of the box!

© 2017 Arm Limited 6

Configurable level of detail

µarch Exploration
HW Validation
Perf. Validation

Cycle Accurate

1–50 KIPS

RTL simulation

High-level perf./power
Architecture exploration

Approximately Timed

0.2–3 MIPS

gem5

Loosely Timed

50–200 MIPS

Qemu

SW Dev

HW Virt.

gem5 + kvm

GIPS

Can be changed at
runtime in gem5!

© 2017 Arm Limited 7

When not to use gem5

Performance validation

• gem5 is not a cycle-accurate microarchitecture model!

• This typically requires more accurate models such as RTL simulation.

Core microarchitecture exploration*

• gem5’s core models were not designed to replace more accurate microarchitectural models.

To validate functional correctness

• New (e.g., Armv8.0+) or optional instructions are sometimes not implemented.

• gem5 is not as rigorously tested as commercial products.

© 2017 Arm Limited 9

How to get involved

Tutorials: http://gem5.org/Tutorials

• Jason’s Learning gem5 tutorials: http://learning.gem5.org/

• The ASPLOS 2017 slides provide an up-to-date general overview

Mailinglists: http://gem5.org/Mailing_Lists

• gem5-dev: Development discussions

• gem5-users: Using gem5 and running experiments

Contribute some code: https://gem5-review.googlesource.com/ (see CONTRIBUTING.md)

9

gem5 is a community effort!

http://gem5.org/Tutorials
http://learning.gem5.org/
http://gem5.org/Mailing_Lists
https://gem5-review.googlesource.com/

© 2017 Arm Limited

A brief technical
overview

© 2017 Arm Limited 11

Example System

© 2017 Arm Limited 12

Simulated system

C++

Python

Configuring and running gem5

Instantiate objects

Instantiate C++
objects

Create & config
Python objects

Run simulation

Simulate in C++

Running guest
code

Run simulation

Simulate in C++

Running guest
code

© 2017 Arm Limited 13

Simulating Time

Discrete: Handles time in discrete steps (ticks)

• Usually 1THz in gem5

Simulator skips to the next event on the timeline

• More efficient than traditional clocked simulators

Time

Event handler

Event handlerStart
Schedule

Call

© 2017 Arm Limited 14

How are models implemented

Python
wrappers

Parameter
structs

C++ model

Generates
Python

description

Describes parameters and
exported methods

Implements your model Includes

© 2017 Arm Limited 15

Examples

Configuration & running:

• Syscall emulation: configs/learning_gem5/part1

• Full-system: configs/example/arm/{fs_bigLittle.py, devices.py}

Simple memory-mapped IO devices: IsaFake

• See: src /dev/ isa_fake .{ cc,hh } and src/dev/Device.py

• Simple PCI devices with interrupts: PciVirtIO

• See: src /dev/ virtio / pci .{ cc,hh } and src/dev/VirtIO.py

More complex PCI device with DMA: CopyEngine

• See: src /dev/ pci / copy_engine .{ cc,hh } and src/dev/pci/CopyEngine.py

© 2017 Arm Limited

CPU models

16

© 2017 Arm Limited 17

Fast & Timing:
• Caches
• No BPs

V

Fast & Timing:
• Caches
• Limited BPs

Slow & Full timing:
• Caches
• Branch predictors

Very Fast & No
Timing:
• No caches
• No BPs

CPU models overview

BaseCPU

BaseKvmCPU TraceCPUBaseSimpleCPU

AtomicSimpleCPU

TimingSimpleCPU

DerivO3CPU MinorCPU

X86KvmCPU

ArmV8KvmCPU

14:15 - Trace-driven simulation of multithreaded applications in gem5
14:45 - Generating Synthetic Traffic for Heterogeneous Architectures

© 2017 Arm Limited

Memory systems

© 2017 Arm Limited 20

On-chip memory system

09:45 - Learning gem5: Modeling Cache
Coherence with gem5

Classic
Memory

MOESI

Snooping

Crossbar
Interconnect

Ruby

Flexible
Coherence

Snooping or
Directory

Based

Flexible
Network
Topology 11:15 - A Detailed On-Chip Network Model

inside a Full-System Simulator

© 2017 Arm Limited 22

Off-chip memory system

AbstractMemory

• Fixed latency (w/
variance)

• Fixed bandwidth

SimpleMemory

• Detailed DRAM controller:
DDRx, LPDDRx, WideIO,
HBM etc

DRAMCtrl

© 2017 Arm Limited 23

Top-down DRAM controller model

Don’t model the actual DRAM, only the timing constraints

• DDR3/4, LPDDR2/3/4, WIO1/2, GDDR5, HBM, HMC, even PCM

• See src/mem/DRAMCtrl.py and src/mem/dram_ctrl.{hh, cc}

DRAM Memory Controller

S
y
s
te

m
 in

te
rfa

c
e

s

write queue

read queue

P
a

g
e

 p
o

lic
y
 &

 a
rb

itra
tio

n

P
H

Y
 &

 tim
in

g
 c

o
n
s
tra

in
ts

Device width
Burst length
#ranks, #banks
Page size

tRCD
tCL
tRP
tRAS
tBURST
tRFC & tRFEI
tWTR
tRRD
tFAW/tTAW
…

Hansson et al, Simulating DRAM controllers for future system architecture exploration, ISPASSõ14

11:45 - Integrating and quantifying the
impact of low power modes in the DRAM
controller in gem5

© 2017 Arm Limited 24

Ports: Connecting memory objects

MemObjects are connected through master and slave ports

A master module has at least one master port, a slave module at least one slave port, and
an interconnect module at least one of each

• A master port always connects to a slave port

• Similar to TLM-2 notation

CPU

memory0

bus

memory1

Master
module

Interconnect
module

Slave
module

Slave portMaster port

I$

D$

15:15 - System Simulation with gem5, SystemC
and other Tools

© 2017 Arm Limited 25

System Overview

2626

Thank You!
Danke!
Merci!

!
!

Gracias!
Kiitos!
ʾở ѮѸ
ňʈŗūŇ

© 2017 Arm Limited

© 2017 Arm Limited 27

Workshop schedule

09.30 Interacting with gem5 using workload-automation & devlib

09.45 ARM Research Starter Kit: System Modeling using gem5

10.00 Break

10.15 Debugging a target-agnostic JIT compiler with gem5

10.30 Learning gem5: Modeling Cache Coherence with gem5

11.00 Break

11.15 A Detailed On-Chip Network Model inside a Full-System
Simulator

11.45 Integrating and quantifying the impact of low power modes
in the DRAM controller in gem5

12.00 Break

12.15 CPU power estimation using PMCs and its application in
gem5

12.45 gem5: empowering the masses

13.00 Lunch

14.15 Trace-driven simulation of multithreaded applications in
gem5

14.45 Generating Synthetic Traffic for Heterogeneous Architectures

15.00 Break

15.15 System Simulation with gem5, SystemC and other Tools

15.30 COSSIM: An Integrated Solution to Address the Simulator Gap
for Parallel Heterogeneous Systems

15.45 Simulation of Complex Systems Incorporating Hardware
Accelerators

16.15 Break

16.30 Introduction to ARM Research

18.20 Poster session

20.00 Dinner

