arm

What is gem5 and where do I get it?

Andreas Sandberg & Nikos Nikoleris ARM Research

Why gem5?

Runs real workloads

Runs complex workloads like Android & ChromeOS

System-level insights

- Device interactions (storage, NICs, ...)
- OS interactions like PA fragmentation
- Can be wired to custom models
 - Add detail where it matters, when it matters!
- Rapid early prototyping
 - Parameterized models enable rapid design space exploration

Large user base in industry & academia

Configurable level of detail

When not to use gem5

Performance validation

- gem5 is not a cycle-accurate microarchitecture model!
- This typically requires more accurate models such as RTL simulation.

Core microarchitecture exploration*

• gem5's core models were not designed to replace more accurate microarchitectural models.

To validate functional correctness

- New (e.g., Armv8.0+) or optional instructions are sometimes not implemented.
- gem5 is not as rigorously tested as commercial products.

How to get involved

Tutorials: http://gem5.org/Tutorials

- Jason's Learning gem5 tutorials: <u>http://learning.gem5.org/</u>
- The ASPLOS 2017 slides provide an up-to-date general overview

Mailinglists: http://gem5.org/Mailing_Lists

- gem5-dev: Development discussions
- gem5-users: Using gem5 and running experiments

Contribute some code: https://gem5-review.googlesource.com/ (see CONTRIBUTING.md)

A brief technical overview

© 2017 Arm Limited

Example System

Configuring and running gem5

Python

Simulating Time

Discrete: Handles time in discrete steps (ticks)

• Usually 1THz in gem5

Simulator skips to the next event on the timeline

• More efficient than traditional clocked simulators

How are models implemented

14 © 2017 Arm Limited

Examples

Configuration & running:

- Syscall emulation: configs/learning_gem5/part1
- Full-system: configs/example/arm/{fs_bigLittle.py, devices.py}

Simple memory-mapped IO devices: IsaFake

- See: src/dev/isa_fake. {cc,hh} and src/dev/Device.py
- Simple PCI devices with interrupts: PciVirtIO
- See: src/dev/virtio/pci.{cc,hh} and src/dev/VirtIO.py

More complex PCI device with DMA: CopyEngine

• See: src/dev/pci/copy_engine. {cc, hh} and src/dev/pci/CopyEngine.py

16

CPU models

© 2017 Arm Limited

CPU models overview

14:15 - Trace-driven simulation of multithreaded applications in gem514:45 - Generating Synthetic Traffic for Heterogeneous Architectures

Memory systems

© 2017 Arm Limited

On-chip memory system

Off-chip memory system

Top-down DRAM controller model

DDR3/4, LPDDR2/3/4, WIO1/2, GDDR5, HBM, HMC, even PCM

Don't model the actual DRAM, only the timing constraints

11:45 - Integrating and quantifying the impact of low power modes in the DRAM controller in gem5

Hansson et al, Simulating DRAM controllers for future system architecture exploration, ISPASS'14

Ports: Connecting memory objects

MemObjects are connected through master and slave ports

A master module has at least one master port, a slave module at least one slave port, and an interconnect module at least one of each

- A master port always connects to a slave port
- Similar to TLM-2 notation

15:15 - System Simulation with gem5, SystemC and other Tools

System Overview

Thank You! Danke! Merci! 谢谢! ありがとう! **Gracias!** Kiitos! 감사합니다 धन्यवाद

Workshop schedule

09.30	Interacting with gem5 using workload-automation & devlib
09.45	ARM Research Starter Kit: System Modeling using gem5
10.00	Break
10.15	Debugging a target-agnostic JIT compiler with gem5
10.30	Learning gem5: Modeling Cache Coherence with gem5
11.00	Break
11.15	A Detailed On-Chip Network Model inside a Full-System Simulator
11.45	Integrating and quantifying the impact of low power modes in the DRAM controller in gem5
12.00	Break
12.15	CPU power estimation using PMCs and its application in gem5
12.45	gem5: empowering the masses

13.00	Lunch
14.15	Trace-driven simulation of multithreaded applications in gem5
14.45	Generating Synthetic Traffic for Heterogeneous Architectures
15.00	Break
15.15	System Simulation with gem5, SystemC and other Tools
15.30	COSSIM: An Integrated Solution to Address the Simulator Gap for Parallel Heterogeneous Systems
15.45	Simulation of Complex Systems Incorporating Hardware Accelerators
16.15	Break
16.30	Introduction to ARM Research
18.20	Poster session
20.00	Dinner