
HAsim:
 FPGA-Based Micro-Architecture
 Simulator

Michael Adler
Michael Pellauer

Kermin E. Fleming*
Angshuman Parashar

Joel Emer

*MIT

HAsim Is a Timing Model – Not RTL!

•  Performance models are:
•  Highly parallel, but not easily vectorizable
•  Pipelineable
•  Full of communication channels

•  Programmed like a software timing model
•  FPGA is just a highly parallel execution engine
•  FPGA cycle != Model cycle

•  FPGA simulation will be faster than software if:
•  Parallelism can overcome the ~40x clock difference
•  I/O bandwidth is sufficient

1

Fast, Accurate or Now?

2

Accuracy

Development
Time

Model
Speed

FPGA Picture is Different

3

Accuracy

Development
Time

Model
Speed

Reducing Development Time:
 Managing Complexity

•  Programming Language (Bluespec)
•  Timing model infrastructure

–  Reusable functional model
–  Inter-module communication
–  Tracking simulated time

•  Hybrid hardware / software models
–  GEM5 for:

• Checkpoints
•  Loading
•  Functional memory management
• Emulating difficult instructions

4

Development
Time

STDIO on General Purpose Machines

	
	
	

FILE	 *f	 =	 fopen(path,	 “w”);	
const	 char	 *name	 =	 “Kenneth”;	
fprintf(f,	 “%s,	 what	 is	 the	 frequency?\n”,	 name);	

5

I/O In Hardware Description Languages
(System Verilog)

	
	
	

Integer	 f	 =	 fopen(path,	 “w”);	
string	 name	 =	 “Kenneth”;	
fwrite(f,	 “%s,	 what	 is	 the	 frequency?\n”,	 name);	

6

Nothing Comes from Nothing

FPGAs have:
•  No standard physical device
•  No standard device model
•  No standard system interface
•  No standard API

7

What Makes Hardware General Purpose?

•  The software
–  Compilers and library APIs make code “universal”
–  Hardware standards (ACPI, PCIe) mostly make OS

development and compiler writing easier. Little impact on
user programs.

–  ISA matters if you want to avoid recompiling. ISA is part
of the software API, along with standard libraries.

8

LEAP Platform

RRR	

Pla&orm	 Interface	

STDIO	 Scratchpad	
Memory	

Control	

Timing	 Par<<on	

Func<onal	 Par<<on	

Remote	 Memory	 Channel	

FPGA	 Physical	 Pla&orm	

Exe	 Decode	 Fetch	

RRR	

Channel	

So'ware	 Physical	 Pla&orm	

Virtual	
Pla2orm	

Control	

SoBware	 Services	

Streams	 Memory	
State	 Emulate	

Virtual	
Pla2orm	

FPGA	 So'ware	

Reducing Model Complexity:
 Shared Functional Model

10

ITranslate

Fetch

DTranslate

Memory

Local
Commit

Global
Commit

Decode

Execute

Functional Pipeline

Functional
State

•  Similar philosophy to GEM5 or
Asim:
–  Single ISA functional model

implementation
–  Functional machine state is

completely managed
–  Timing models can be ISA-

independent

•  Each functional pipeline stage
behaves like a request/response
FIFO

ISPASS 2008 Paper:
Quick Performance Models Quickly: Timing-Directed
Simulation on FPGAs

Timing Model

11

ITranslate

Fetch

DTranslate

Memory

Local
Commit

Global
Commit

Decode

Execute

Functional Pipeline

Functional
State

IP

Next IP

•  Timing &
functional models
communicate
state using tokens

•  Minimal timing
model:
–  Only state is IP
–  Drives a single

token at a time

Timing Pipeline

Pipeline Parallelism

12

ITranslate

Fetch

DTranslate

Memory

Local
Commit

Global
Commit

Decode

Execute

Functional Pipeline

Functional
State

IPs

Next IPs

•  Model of a pipelined
design naturally runs
pipelined on an
FPGA

•  Detailed model of a
pipelined design
runs faster than a
trivial, unpipelined
model!

13

Managing Time:
 A-Ports and Soft Connections

FPGA cycles != simulated cycles:

–  We are building a timing model, NOT a prototype
–  1:n cycle mapping would force us to slow the

timing clock to the longest operation, even if it is
infrequent

–  1:n would force us either to fit an entire design
on the FPGA or synchronize clock domains

14

Option #1: Global Controller [rejected]

Central controller advances cycle when all modules are ready
•  Improvement: slowest possible cycle no longer dictates

throughput
•  However:

–  Place & route becomes difficult
–  Long signal to global controller is on the critical path

FET DEC EXE MEM WB

Controller

 curCC

15

Option #2: A-Ports

•  Extension of Asim ports
•  FIFO with user-specified latency and capacity
•  Manage model time by guaranteeing exactly one

message per cycle through every port

FET DEC EXE MEM WB 1
1

1 1
0

2

•  Beginning of model cycle: read all input ports
•  End of model cycle: write all output ports

ISFPGA 2008 Paper:
A-Ports: An Efficient Abstraction for Cycle-Accurate Performance Models on FPGAs

Hybrid Modeling:
 Software Instruction Emulation

16

FP
G

A
S
of

tw
ar

e

Time

Execute

Emulation
Server

GEM5
Functional Instruction Simulator

Memory
Server

Functional
Cache

Execute

Emulation
Server

Sync Registers Sy
nc

 R
eg

is
te

rs

RRR
Layer

Em
ulate Instruction Em

ul
at

io
n

D
on

e

…
…

Ac
k

HAsim / LEAP Open Source

Redmine site with source and papers:

 http://asim.csail.mit.edu/

17

