Architectural Exploration with
gems

ARM Andreas Sandberg

Stephan Diestelhorst
William Wang

ARM Research

X1 GASRLOS 2017
201+04-09

©ARM 2017



This Is an Interactive presentation

Please ask questions:
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Level of detall

A HW Virtualization
A Very no/limited timing
A The same Host/guest ISA
A Functional mode
A No timing, chain basic blocks of instruction
A Can add cache models for warming
A Timing mode
A Single time for execute and memory looku
A Advanced on bundle
A Detailed mode
A Full outof-order, inrorder CPU models
A Hit-undermissyeodering €&
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Users and contributors

A Widely used in academia and industryooo

A Contributions from
A ARM,AMD, Google
A Wisconsin, Cambridge, Michigan, BEC,

In a Nutshell, gem5...

... has had 11,558 commits made by 193 contributors
representing 386,321 lines of code

... is mostly written in C++
with a well-commented source code

... has a well established, mature codebase
maintained by a very large development team
with stable Y-O-Y commits

... took an estimated 104 years of effort (COCOMO model)
starting with its first commit in October, 2003

8 ending with its most recent commit 14 days ago

Publications with gem5

1200

800

600

400

200

0 T T T I
2011 2012 2013 2014 2015

Languages

| G+ 74% | Python 18%

I 13 Other 8%

Lines of Code

2004 2006 2008 2010 2012 2014 2016

Il Code M Comments Blanks

2016

ARM



1

9

When not to use gem5

A Performance validation
A gemb5 is not a cyclaccurate microarchitecture model!
A This typically requires more accurate models such as RTL simulation.
A Commercial products such a&RM CycleModels operate in this space.

A Core microarchitecture exploration

A Onlydo this if you have a custom, detailed, CPU model!

Agem50s core models were not designed
A To validate functional correctness or test bleedmgdge ISA improvements

A gemb> is not as rigorously tested as commercial products.
A New (ARMv8.0+) or optional instructions are sometimes not implemented
A Commercial products such a&RM FastModels offer better reliability in this space.

©ARM 2017
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Why gem5?

A Runs real workloads
A Analyze workloads that customers use and care about 4%
Aé including complex wor k| o
A Comprehensive model library
A Memory and I/O devices
A Full OS,Web browsers
A Clients and servers Butnot a microarchitectural

A Rapidearlyprototyping model out of the box!
A New ideas can be tested quickly —
A Systemevel impact can be quantified
A Systemevel insights
A Enables us to study complex

Less)
......

memorysystem interactions A
A Can be wired to custom models S
A Add detail where it matters, when it matters! ans201>

10  ©ARM 2017 ARM
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Prerequisites

A Operating system:
A OSX, Linux
A Limited support for Windows 10 with a Linux environment
A Software:
A git
A Python 2.7 (dev packages)
A SCons
A gccd.8 or clang 3.1 (or newer)
A SWIG 2.0.4 or newer
A make
A Optional:
A dtc (to compile device trees)
A ARMvVS8 cross compilers (to compile workloads)
A pythonpydot (to generate system diagrams)

©ARM 2017
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Compiling gem5

$ scons build/AIEl\/I/g%mS.op( |
1 1

A Guest architecture A Optimization level:
A Several architectures in the source A debug: Debug symbols, no/few
tree. optimizations

A Most common ones are: A opt: Debug symbols + most
' optimizations

A ARM o | A fast: No symbols + even more
A NULL 06 Used for tracedrive simulation optimizations

A X86 9 Popular in academia, buery
strange timindpehavior

©ARM 2017
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Compi |l 1 ng gemb5O0s

1. sudo apt install device - tree - compiler

2. make T C system/arm/ dt
A Device trees are used to describe hamt-discover devices

Aarmv8 _gem5 vl Ncpu.dtb

A Traditional CMP/SMP configuration withcores
A Built from armv8.dts and platforms/vexpress_gem5 vl.dtsi

A armv8 _gemb5 vl big little M N.dtb
A bigLittleconfigurationsvith M bigcoresandN smallcores
A Built from armv8.dts and platforms/vexpress_gem5 vl.dtsi

©ARM 2017
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Compliling Linux for gem5

sudo apt install gcc -aarch64 -linux -gnu

git clone - b gem5/v4.4 https://github.com/gem5/linux - arm- gemb5
cd linux -arm-gem5

make ARCH=arm64 CROSS_COMPILE=aarch64- linux -gnu- gemb5_defconfig
make ARCH=arm64 CROSS COMPILE=aarch64- linux -gnu- -j nproc

o & w0 D BE

A Builds the default kernel configuration for gem5
A Has support for most of the devices that gem5 supports

16 ©ARM 2017 ARM
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Example disk images

A Example kernels and disk images can be downloaded from gem5.org/Download
A This includes preompiled boot loaders
A Old but useful to get started

A Download and extract this into a new directory:

A wget http://www.gemb5.org/dist/current/arm/aarch - system - 2014 - 10.tar.xz
A mkdir dist ;cd dist
A tar xvf ../aarch - system - 2014 - 10.tar.xz

A Set the M5_PATH variable to point to this directory:
A export M5 PATH=/path/to/dist

A Most example scripts try to find files usiMp PATH

A Kernels/boot loaders/device trees #{M5_PATH}/binaries
A Disk images i${M5_PATH}/disks

©ARM 2017 ARM
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Running an example script

$ build/ARM/gem5.opt configs/example/arm/fs_bigLITTLE.py
--kernel path/toymlinux\
--CpUtype atomic\
--dth $PWD/system/arndt/armv8 _gem5 v1 big little 1 1.dib
--diskyour_disk Iimage.img

A Simulates alL system with 1+1 cores
AUses a functional O6atomicd CPU model
AUse the O0timingo O8U+InOceigurltionr an exampl e

18 ©ARM 2017 ARM
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Design philosophy

A gemb5 is conceptually a Python library implemented in C++
A Configured by instantiating Python classes with matching C++ classes
A Model parameters exposed as attributes in Python
A Running is controlled from Python, but implemented in C++

A Configuration and running are two distinct steps
A Configuration phase ends with a call to instantiate the C++ world
A Parameters cannot be changed after the C++ world has been created

21 ©ARM 2017 ARM
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Useful tricks

A gemb5 can be launched interactively
A Use the-i option
A Pretty prompt ifipythonhas been installed
A Still requires a simulation script

A lghoreconfigs/example/{ fs,se }. py andconfigs/common/FSConfig.py
A Far too complex
A Tries to handle every single use case in a single configuration file

A Good configuration examples:
A configs/learning_gem5/
A configs/example/arm/

©ARM 2017
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Control flow

Python m5.instantiate() m5.simulate() m5.simulate()

Create Python

: Instantiate objects Run simulation Run simulation EEEZ
objects

C++

Exit event
Exit event

v

Instantiate C++
objects

allback
allback

Simulated system

O O
v v
Running guest Running guest
code code

23 ©ARM 2017 ARM




General structure

A The simulator contains exactly one Root object

A Controls global configuration options
A root = Root( full_ system =True)

A The root object contains one or more System instances
A A system represents a shared memory machine
A Contains devices, CPUs, and memories

A Multiple system may be connected using network interfaces
A Cluster on cluster simulation
A Not within the scope of this presentation

24 ©ARM 2017 ARM



System Overview
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A The system contains basic platform devices
A Interrupt controllers, PCI bridge, debug UART
A Sets up the boot loader and kernel as well

A See examples in config/example/arm:
A SimpleSystem (devices.py) defines a basic ARM system with PCI support
A Instantiated byreateSystem () infs_bigLITTLE.py

26 ©ARM 2017 ARM
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Overriding model parameters

Import m5

(class L1DCache(m5.objects.Cache):
assoc = 2

size = '16kB’
\

-
class L1ICache(L1DCache):

assoc =16
\_

p
11i = L1ICache(assoc=8,
repl=m5.objects.RandomRepl())

.

" AUs e gem56s base
A Override associativity
A Override size

——

A Use defaults from L1DCache
A Override associativity again

—

A Override parameters at
Instantiation time

27  ©ARM 2017
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- Running

" [m5.instantiate() ]{ A Instantiate the C++ world
[event = m5.simulate() ]-< A Start the simulation
AN . . ' N — R Pri _ _
print 'Exiting @ tick % i :%s' \ Print why the simulator exited
% (m5.curTick(), —J A Sometimes desirable to call
. event.geiCause () ) mb5.simulate() again.
’ Y [ ARun for a fixed number of
—

m5.simulate(m5.tick.fromSeconds(0.1)) simulated seconds

\, J —

28 ©ARM 2017 ARM



Creating Checkpoints

m5.checkpoint(' name.cpt ')

ACheckpoints can be used to store the
A Can be used to implemer@imPoint®r similar methodologies

A Checkpoint limitations:

A The act of taking a checkpoint affects system state!

ACheckpoints donot store cache state
ACheckpoints donot store pipeline state

©ARM 2017 ARM
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Restoring Checkpoints

. . , — A Instantiate system and load
mb5.instantiate( name.cpt ') — .
state from checkpoint
[event = mb5.simulate() ] — A Run in the same way as before

30 ©ARM 2017 ARM
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Guest to simulation script communication

[system.exit_on_work_items = True { A Work item handling in Python
e

- m——m— A Exit event will contain
[even = mS.simulate() ] information about work items

]{ A Include the m5op header

[#lnclude "m50p.h” A Remember to link with libm5.a

- TP

m5_W_0rk_b?9'”('d’ 0); A Annotate your regions of
// Region of interest — interest

m5_work _end(id, 0);

G J

31 ©ARM 2017 ARM



Exit Events

event.getCause () event.getCode ()

user interrupt received - User pressedCtrl+C

simulate() limit reached - gemb5 reached the specified
time limit

m5_exit instruction Exit code from guest  Guest executed m5_exit()

encountered

m5_fall instruction Failure code from guest Guest executed m5_fail()

encountered

checkpoint - Guest executed
m5_checkpoint()

workbegiriworkend Work item ID Guest work item annotation

32 ©ARM 2017 ARM
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Dumping statistics

A Can be requested from Python:
A mb5.stats.dump(): Dump statistics
A mb.stats.reset() : Reset stat counters

A Guest command line:
A m5 dumpstats [[delay] [period]]
A m5 dumpresetstas [[delay] [period]]

A Guest code using libm5.a:
A m5_dump_stats(delay, periodicity):
A m5_dumpreset_stats(delay, periodicity):

©ARM 2017

Dump statistics
Dump & reset statistics
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Examples

A Simple full system configuration file: ARM.LITTLEonfiguration example
A configs/example/arm/{fs_bigLittle.py, devices.py}
A Demonstrates how to setup a single system
A Reasonably small and well documented

A Distributed multtsystem configuration:
A configs/example/arm/dist_bigLittle.py
A Reuses the configuration file above

A Simplesyscalemulation mode example:Jason Lel® wer 0s Lear ni
A configs/learning_gemb5/partl

©ARM 2017 ARM
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Debugging Facilities

A Tracing
A Instruction tracing
A Diffing traces

A Usinggdbto debug gem5
A Debugging C++ anddb-callable functions
A Remote debugging

A Pipeline viewer

©ARM 2017
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Tracing/Debugging

A printf () is a nice debugging tool
A Keep good print statements in code and selectively enable them
A Lots of debug output can be a very good thing when a problem arises
A UseDPRINTFs in code
A DPRINTH , "Inserting entry into TLB with pfn : %# x é)

A Example flags:
A Fetch, Decode, Ethernet, Exec, TLB, DMA, Bus, Cache, O3CPUAII
A Print out all flags with ./build/ARM/gem5.opt -- debug - help

A Enabled on the command line
A -- debug - flags=Exec
A -- debug - start=30000
A -- debug- file= my_trace.out
A Enable the flag Exec; Start at tRBO0O0 ;Write to my_trace.out

37  ©ARM 2017 ARM



Sample Run with Debugging

Command Line;:

22:44:28 [/work/gem5] ./build/ARM/gemb5. opt -- debug - flags=Decode  --
debug - start=" 50000 -- debug - file= my_trace.out configs /example/ se.py -C
tests/test - progs /hello/bin/arm/ linux /hello

é

ek REAL SIMULATION ****

info: Entering event queue @ 0. Starting simulation...
Hello world!

Exiting @ tick 3107500 because target called exit()

my_trace.out
2:44:47 [/ work /gem5] head mb5out/ my_trace.out

50000: system.cpu : Decode: Decoded cmps instruction : 0xe353001e
50500: system.cpu : Decode: Decoded Idr instruction . 0x979ff103
51000: system.cpu : Decode: Decoded Idr instruction . 0xe5107004
51500: system.cpu : Decode: Decoded Idr instruction : 0xe4903008
52000: system.cpu : Decode: Decoded addi_uop instruction . 0xe4903008
52500: system.cpu : Decode: Decoded cmps instruction : 0xe3530000
53000: system.cpu : Decode: Decoded b instruction ; Ox1affff84
53500: system.cpu : Decode: Decoded sub instruction . 0xe2433003
54000: system.cpu : Decode: Decoded cmps instruction : 0xe353001e
54500: system.cpu : Decode: Decoded Idr instruction . 0x979ff103

38 ©ARM 2017 ARM
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Adding Your Own Flag

A Print statements put in source code
A Encourage you to add ones to your models or contribute ones you find particularly useful

A Macros remove them from thgem5.fast  binary

A There is no performance penalty for adding them
A To enable them you need to rugem5.opt or gem5.debug

A Adding one with an existing flag
ADPRI NTF(<fl ag>,prinff n o%3mal, Aar gument so) ;

A To add a new flag add the following in a Sconscript
A DebugFlag ( dMyNewFlag6 )
Alnclude corresponding header, eMyNewFldgghma | ude

ndeb

©ARM 2017 ARM
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Instruction Tracing

A Separate from the general debug/trace facility
A But both are enabled the same way

A PeFrinstruction records populated as instruction executes
A Start with PC and mnemonic
A Add argument and result values as they become known

A Printed to trace when instruction completes
A Flags for printing cycle, symbolic addresses, etc.

2:44:47 [/
50000 :
50500:
51000:
51500:
52000:
52500:
53000:

©ARM 2017

0x14468
0Ox1446c
0x14640
0x14644
0x14644
0x14648
0x1464c

.0
i

cmps

work /gem5] head mb5out/ my_trace.out
TO:
TO:
TO:
TO:
TO:
TO:
TO:

r3, #30
ldrls pc, [pc, r3 LSL #2]
ldr r7, [rO, # - 4]
ldr r3, [rO] #8
addi_uop ro, r0, #8
cmps r3, #0
bne

: IntAlu : D=0x00000000

: MemRead: D=0x00014640 A=0x14480
. MemRead: D=0x00001000 A=0xbeffffOc
: MemRead: D=0x00000011 A=0xbeffff10
. IntAlu . D=0xbeffff18
. IntAlu : D=0x00000001
. IntAlu

ARM



Using GDB with gem5

A Several gemb5 functions are designed to be called from GDB
A schedBreakCycle () 0 also with-- debug - break
A setDebugFlag ()/ clearDebugFlag ()
A dumpDebugStatus ()
A eventgDump ()
A SimObject ::find()
A takeCheckpoint ()

41  ©ARM 2017 ARM
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Using GDB with gem5

©ARM 2017

2:44:47 [/work/gem5] gdb -- args ./build/ARM/gem5.opt
configs /example/ fs.py
GNUgdb Fedora (6.8 - 37.el5)

(-gdb) b main

Breakpoint 1 at 0x4090b0: file build/ARM/ sim / main.cc , line 40.
(gdb) run

Breakpoint 1, main ( argc =2, argv =0x7fffa59725f8) at

build/ARM/  sim / main.cc
main( int argc , char ** argv )

(gdb) call schedBreakCycle (1000000)
(gdb) continue
Continuing.

gem5 Simulator System

0: system.remote_gdb.listener . listening for remote gdb #0on
port 7000

*** REAL SIMULATION ****

info: Entering event queue @ 0. Starting simulation...

Program received signal SIGTRAP, Trace/breakpoint trap

0x0000003cch6306f7 in kill () from /lib64/libc.s0.6

ARM
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Using GDB with gem5

(gdb) p __ curTick
$1 = 1000000

(gdb) call setDebugFlag ("Exec")
(gdb) call schedBreakCycle (1001000)
(gdb) continue

Continuing.

1000000:

system.cpu TO: @ stext+148.1 : addi_uop

: D=0x00004c30

1000500:

system.cpu TO: @ stext+152 : tegs 10, r6:

D=0x00000000

Program

received signal SIGTRAP, Trace/breakpoint trap.

(gatyORRRPO3SRASRAT n il from Ligaling 0.6
$2 =( SimObject *)0x19cbal30

(gdb) print( BaseCPU) SimObject ::find(" system.cpu
$3 =( BaseCPU *) 0x19cbhal30

(gdb) p $3 - >instCnt

$4 = 431

©ARM 2017
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rO, rO, #4 :

IntAlu

IntAlu
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Diffing Traces

A Often useful to compare traces from two simulations
A Find where known good and modified simulators diverge

A Standard diff only works on files (not pipes)

Aébut you really dondt want to run the simulat:i

A util /[ rundiff
A Perl script for diffing two pipes on the fly

A util [ tracediff
A Handy wrapper for usingundiffto compare gem5 outputs
A tracediff Ra/ gemb. opt | b/ Jgdemk - flagstErec
A Compares instructions traces from two builds of gem5
A See comments for details

ARM
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Advanced Trace Diffing

ASometi mes I f you run |1 nt o a-to-applesttrgcesb ug I

A Different cycles counts, different code paths from interrupts/timers

A Some mechanisms that can help:
A - ExecTicks dondt print out ticks
A - ExecKernel dondt print out kernel code
A -ExecUser dono6t print out user code
A ExecAsid print out ASID of currently running process

A State trace

A PTRACE program that runs binary on real system and compares-bycy¢cle to gem5
A Supports ARM, x86, SPARC
A See wiki for more information [http://gem5.ofgAce Based Debugging

©ARM 2017
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Checker CPU

A Runs a complex CPU model such as the O3 model in tandem with a special
Atomic CPU model

A Checker reexecutes and compares architectural state for each instruction
executed by complex model at commit

A Used to help determine where a complex model begins executing instructions
Incorrectly in complex code

A Checker cannot be used to debug MP or SMT systems

A Checker cannot verify proper handling of interrupts
ACertain instructions mwfigt be mar ked u

46  ©ARM 2017 ARM
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Remote Debugging

/build/ARM/gem5.opt configs /example/ fs.py
gem5 Simulator System

command line: ./build/ARM/gem5.opt

configs /example/ fs.py

Global frequency set at 1000000000000 ticks per second

info: kernel located at: / dist /binaries/ vmlinux.arm

Listening for system connection on port 5900

Listening for system connection on port 3456

0: system.remote_  gdb.listener . listening for remote gdb #0 on

port 7000
simulation...

©ARM 2017

info: Entering event queue @ 0. Starting
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Remote Debugging

GNUgdb (Sourcery G++ Lite 2010.09 - 50) 7.2.50.20100908 - CVS

Copyright (C) 2010 Free Software Foundation, Inc.

(gdb) symbol - file/  dist /binaries/ vmlinux.arm

Reading symbols from / dist /binaries/ vmlinux.arm ...done.

(gdb) setremoteZ - packeton )
(gdb) set tdesc filenamearm - with - ne}un.Axﬁn'T/'V roonly, ARMvE doesnot nee;
(gdb) target remote 127.0.0.1:7000

Remote debugging using 127.0.0.1:7000

cache_init_objs ( cachep =0xc7c00240, flags=3351249472) at

mm/slab.c:2658

(gdb) step

sighand_ ctor (data=0xc7ead060) at kernel/fork.c:1467

(gdb) info registers

rO Oxc7ead060 - 940912544
rl  0x5201312
r2  0xc002fled - 1073548828
r3 0Oxc7ead060 - 940912544
r4  0x00
R r,5 Oxc7ead020 940912608 ARM

e
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O3 Pipeline Viewer

Use -- debug - flags=0O3PipeView andutil

/03 - pipeview.py

Thanks for flying Vim — less — 162 x44

ceana -
P B

P

©ARM 2017

ldq +1
brz 1
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Describes parameters and

exported methods

Python
description

How are models implemented

Generates
Python

wrappers

Parameter
structs

Implements your model

52  ©ARM 2017
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How are models instantiated

obj = MyOby) mb5.instantiate()

Python
wrappers

Python object

Instantiate and populate
MyObjParams

Parameter
C++ model

struct

MyObjParamscreate()

53 ©ARM 2017 ARM



- Discrete event based simulation

Schedule

I
)

Ml MyODbj:startup() Event handler

e

Time

Event handler i Ll Ll b

A Discrete: Handles time in discrete steps
A Each step is a tick
A Usually 1THz in gem5

A Simulator skips to the next event on the timeline

54  ©ARM 2017 ARM



Creating aSimODbject

A Derive Python class from Pythd&imObiject

A Define parameters, ports and configuration
A Parameters in Python are automatically turned into Gstruct and passed to C++ object

A Add Python file toSConscript
A Or, place it in an existing Python file

A Derive C++ class from C+4&imObject
A Defines the simulation behavior
A Seesrc / sim/ sim_object .{ cc,hh }
A Add C++ filename td&SConscript  in directory of new object
A Need to make sure you have a create factory method for the object
A Look at the bottom of an existing object for info

A Recompile

55  ©ARM 2017 ARM



- SiImODbjectinitialization

Instantiation Register stats
A Uses a factory method: A MyObijectregStat§)

MyObjectParamscreate()

Start model
A MyObiject:startup()

56  ©ARM 2017

Initialize architectural
State

A MyObijectinitState)

Reset stats
A MyObijectresetStatf)

ARM
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Parameters an&imODbjects

A Parameters td5imObjectsare synthesized from Python structures
A Object hierarchy in Python reflects the C++ world

A This example is from src/dev/arm/Realview.py

Python class nam\ o Python base class

class PI011(  Uart ):
C++ clasS==——) type = 'PI011'
__— cxx_header ="dev/arm/pl011.hh"
C++ header gic = Param.Gic (Parentany ," Gic to use for interrupting”)
int_num = Param.UInt32("Interrupt number that connects to GIC")

éu

end on_ eot = Param.Bool ( Fal s e, "End the simulation when
int_delay = Param.Latency ( " 100ns ", "Ti me between action é"
Parameter name Parameter type ‘ Parameter Description

Default value

57  ©ARM 2017
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SimObjectParameters

A Parameters can be:
A Scalar®) Param.Unsign€fl),Param.Float5 . 0) , Param. Ul nt 32(42), &
A Arraysd VectorParam.Unsign€d,1,2,3])
A SimObject® Param.PhysicalMemdrye )
A Arrays of SimObject VectorParam.PhysicalMem@Parent.any
A Memory address rangé$aramAddrRang@,Addr.max))
A Normally converted from strings with units :
A Latencyd Param.Laten§i 5 ns 0 ) Ti cKk
A Frequencyd Param.Frequentyd 1 0 O-MHck O )
A MemorySizeéd Param.MemorySited 1 GHjtgs
A Timed Param.Timg 6 Mon Mar 25 09:00: 00 CST 201206)
A Ethernet Addres® Param.EthernetAddro 9 0: 00: AC: 42 : 45: 000)

58  ©ARM 2017 ARM
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Auto-generated Header file

©ARM 2017

#ifndef _ PARAMS__ Pl011
#define _ PARAMS__ PI011

class PI011;

#include < cstddef >
#include "base/ types.hh ©
#include"  params/ Gic.hh "
##include "base/ types.hh

#include "  params/ Uart.hh " Factory method

struct Pl0O11Params

. public UartParams
{ class PI0O11(  Uart ):
PI011 * create(); type = 'PI011'
w_nt32_t | Int_num ; >< gic = Param.Gic (Parentany , ¢é)
Gic * gic ; int num = Param. Ul nt 32( é)
bool end_on_eot ; < end_on_eot = Param.Bool ( Fal se, " E n d é)
Tick int_delay ; < int delay = Param.Latency ( " 100ns", Ti m

3
#endif // __PARAMS_ PIO11

ARM



How Parameters are used in C++

srd/devarm/plO11.cc:

PI011::PlI011(  const PI0O11Params *p )
. Uart (p), é,
INtNum ( p- >int_num ), gic (p->gic ),
endOnEOT p- >end_on_eot ), intDelay (p->int_delay )

—~ D\

You can also access parameters thropghams) accessomfter instantiation.

60 ©ARM 2017 ARM
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Creating/Using Events

A One of the most common things in an event driven simulator is

scheduling events
A Declaring events and handlers is easy:

/* Handle when a timer event occurs */

void timerHappened ();
EventWrapper <MyClass , & MyClass :: timerHappend > event;

A Scheduling them is easy too:

[* something that requires me to schedule an event at time t*/
if ( event.scheduled 0)
reschedule(event, curTick () +1);

else
schedule(event, curTick () +1);

©ARM 2017
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CheckpointingSimODbjectState

A If your object has state, that needs to be written to the checkpoint

A Checkpointing takes place ondaainedsimulator
A Draining ensures that microarchitectural state is flushed
A Models may need to flush pipelines and wait for outstanding requests to finish.

A Checkpoint implemented by overriding
SimObject ::serialize( CheckpointOut &)

A Save necessary state
A No need to store parameters from the confgystyenh
A UseSERIALIZE_*() macros orparamOut

A To implement restore, override
SimObject :. unserialize ( Checkpointin &)

A UseUNSERIALIZE *() macros orparamin

62  ©ARM 2017 ARM



- Creating a checkpoint

Trigger checkpointing Drain the simulator Serialize objects

AScript call: AEnsures a welllefined AMyObiject:serialize(
m5. checkmyxpta ) architectural state CheckpointOut)

AFlushes CPU pipelines
AWrites back caches

Resume drained object: Resume simulation

AMyObjectdrainResum@ AScript call:
mb5.simulate()
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Restoring from a checkpoint

Instantiation

AUses a factory method:
MyObjectParamscreate()

Resume system
AMyObiject ::drainResume ()

©ARM 2017

Register stats
AMyObject regStat§)

Start model
AMyObject:startup()

Restore architectural
state

AMyObiject ::unserialize (
Checkpointin &)

Reset stats
AMyObject resetStat§)

ARM



Draining

Script requests draining

———

A Flush internal state
A Stop producing new ~— Call SimObjectdrain()
messages

All objects
drained

Simulate until
signalDrainDon@
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Checkpointing Example

/[ uint16_t control;
void
Pl011::serializ€nheckpointOut&cp) const

{
SERIALIZE _SCALAR(control);

}

void
Pl011unserializéCheckpointin&cp)

{
UNSERIALIZE _SCALAR(control);

}

©ARM 2017
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Good Examples

A Simple 10 devicessaFake
A Seesrc /dev/ isa fake .{ cc,hh } andsrc/dev/Device.py
A Demonstrates a basic memeoerngapped device using thiBasicPioDevice  base class

A PCI device®ciVirtlO
A Seesrc /dev/ virtio /pci .{ cc,hh } andsrc/dev/VirtlO.py
A PCI device with a single BAR and interrupts
A More complex PCI devic€opyEngine
A Seesrc /dev/ pci / copy _engine .{ cc,hh } andsrc/dev/pci/CopyEngine.py
A PCI device with DMA support
A Python exportsPowerModelState

A Seesrc/sim/power/PowerModelState.py
A Exports two methods getDynamicPower & getStaticPower ) to Python

©ARM 2017
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- Goals

e A Model a system witlmeterogeneouspplications, running on a set of
e heterogeneouprocessing engines, usingterogeneousnemories and
Interconnect

A CPU centric: capture memory system behaviour accurate enough
A Memory centric: Investigate memory subsystem and interconnect architectures

ARM
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Goals, contd.

A Two worlds...
A Computatiorrcentric simulation
A e.gSimpleScalgsimetc
A More behaviourally oriented, with aaoc ways of describing parallel behaviours and
Intercommunication

A Communicationcentric simulation
A e.g. SystemC+TLM2 (IEEE standard)
A More structurally oriented, with parallelism and interoperability as a key component
A gemb5 is trying to balance
A Easy to extend (flexible)
A Easy to understand (well defined)
A Fast enough (to run fulystem simulation at MIPS)
A Accurate enough (to draw the right conclusions)
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Event Simulation

A Eventdriven
A Nno activity-> no clocking
A event queue

A Deterministic
A fixed random number seed
A no dependence on host addresses

A Multi-Queue
A multiple workers

72 ©ARM 2017

/| event queue\

time

ARM



1

73

Ports, Masters and Slaves

A MemObijectsare connected through master and slave ports

A A master module has at least one master port, a slave module at least one slave
port, and an interconnect module at least one of each
A A master port always connects to a slave port
A Similar to TLM2 notation

Master Interconnect Slave

module \\ / / module / module

Master port —  Slave port —
©ARM 2017 p p ARM
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Transport interfaces

A Atomic
A Similar to loosely timed in TLM
A Blocking: Requests completes in a single call chain
A Each component along the way adds latency to the request The Atomic and Timing

interfaces are mutually
exclusive

A Timing
A Similar to approximately timed in TLM
A Asynchronous: One call to send a paclatllbackvhen response is ready.

A Functional
ADebug i nterface that doesndot affect coheren
A Blocking: Requests complete within a single call chain.

©ARM 2017 ARM
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Communication Monitor

A Insert as a structural component where stats are desired

memmonitor = CommMonitor()
membus.master = memmonitor.slave
memmonitor.master = memctrl.slave

A A wide range of communication stats
A bandwidth, latency, intdransaction (read/write) time, outstanding transactions, address

heatmapetc
A Provides an attachment point for communication probes:
A Tracing (usingrotobuf) Latency distribution

A Stack distance monitoring
A Footprint estimation

Distribution (%)
PNWSOIO N
ololoNolololoNe

RS AR ALY
q\ \Qb& \\‘b \q)\ ARM
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Traffic generator

A Test scenarios for memory system regression and performance validation

A Highlevel of control for scenario creation

A Blackbox models for components that are not yet modeled

A Video/baseband/accelerator for memesystem loading

A Inject requests based on (probabilistic) stat@nsition diagrams
A ldle, random, linear and trace replay states

©ARM 2017

linear

dle
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Memory controllers

A All memories in the system inherit frombstractMemory

A Basic singlehannel memory controller
A Instantiate multiple times if required
A Interleaving support added in the bus/crossbar (to be posted)

A SimpleMemory
A Fixed latency (possibly with a variance)
A Fixed throughput (request throttling without buffering)
A SimpleDRAM
A Highlevel configurable DRAM controller model to minid®Rx, LPDDRxWidelO, HBMetc
A Memory organization: ranks, banks, rwffer size
A Controller architecture: Read/write buffers, open/close page, mapping, scheduling policy
A Key timing constraint$RCD, tCL,tRRtBURSTIRFC tREFItTAW /tFAW

ARM
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Top-down controller model

ADonot model the actual DRAM, only the
A DDR3/4,LPDDR2/3/4,W101/2, GDDR5, HBM, HMC, even PCM
A SeesrémenDRAMCIrl.pgndsrémenidram_ctr{hh cc}

Device width
Burst length
#ranks, #banks
Page size

DRAM Memory Controller

write queue

read queue

tRCD

tCL

tRP

tRAS
tBURST
tRFC& tRFEI
tWTR

tRRD
tFAW/TAW

e

Hansson et aGimulating DRAM controllers for future system architecture expBmat® S o 1 4
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Controller model correlation

A Comparing with a real memory controller

A Synthetic traffic sweeping bytes per activate and number of banks
A Seeconfigslramséweep.pgndutifdram_sweep_plot.py

gem5 model

m 80-100
m 60-80
m 40-60
m 20-40
m(0-20

64 Bytes per

79 ©ARM?2017 Activate

Real memory controller

100 — LSS
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60 - = 80-100
40+ T m60-80
20 +—  40-60
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0 =
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- DRAM power modeling

B e
Qg&’
e A DRAM accounts for a large portion of system power DRAMPower
€ A Need to capture power states, and system impact

A Integrated model opens up for developing more clever strategies
A DRAMPoweradapted and adopted for gem5 usase

Energy Saving due to Power -Down (%) BBench DRAM Energy Analysis (LPDDR3 x32)

GPU-AngryBirds
A Active Energy

A Precharge Energy m Static Energy(mJ)

bbench m Energy Saving due to

Power-Down (%) A Read/Write Energy

A Refresh Energy

® Dynamic Energy(mJ)

0 5 1015202530354045505560657075808590
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Address interleaving

A Multi-channel memory support is essential

A Emerging DRAM standards are mugltiannel by nature
(LPDDR4,WI01/2,HBM1/2, HMC)

A Interleaving support added to address range
A Understood by memory controller and interconnect

A Seesre¢baseaddr_range.Hior matching and
srémenixbar{hh cc}for actual usage

A Interleaving not visible in checkpoints

A XOR-based hashing to avoid imbalances
A Simple yet effective, and widely published
A SeeconfiggommoremConfig.@gr system configuration
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Crossbarsé&Bridges

A Create rich system interconnect topologies using
a simple bus model and bus bridge

A Crossbars do address decoding and arbitration
A Distributes snoops and aggregates snoop responses

A Routes responses
A Configurable width and clock speed

A Bridges connects two buses
A Queues requests and forwards them

A Configurable amount of queuing space for requests and

responses
XBar

©ARM 2017

Bridge

ARM



Caches

A Single cache model with several components:
A Cache: request processing, miss handling, coherence
A Tags: data storage and replacement (LRU, Random, etc.) Cache
A PrefetcherN-Block Ahead, TaggdeérefetchingStride

Prefetching
A MSHR &MSHRQueusetrack pending/outstanding

requests
A Also used for write buffer

A Parameters: size, hit latency, block sassociativity =
number of MSHRs (max outstanding requests)
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Coherence protocol

A MOESI budased snooping protocol
A Support nearly arbitrary muHevel hierarchies at the expense of some realism

A Does not enforce inclusion

AMagi c oOexpress snoopsodO propagate upwa
A Avoid complex race conditions when snoops get delayed
A Timing is similar to some realorld configurations

A L2 keeps copies of all L1 tags
A L2 and L1s snooped in parallel

ARM
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Snoop (probe) filtering

A Broadcastbased coherence protocol
A Incurs performance and power cost
A Does not reflect realistic implementations

A Snoop filter goes one step towards directories
A Track sharers, based osmritebackand clean eviction
A Direct snoops and benefit from locality

A Many possible implementations
A Currently ideal (infinite), no back invalidations
A Can be used with coherent crossbars on any level

A SeesrémeniSnoopFilter.pnd
srémenisnoop_filtehh cc}*
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Memory system verification

A Check adherence to consistency model
A Notion of functional reference memory is too simplistic
A Need to track valid values according to consistency
model
A Memory checker and monitors

A Tracking insrémeniMemChecker.jaynd
srémenimem_checkégnh cc}

A Probing insréememmem_checker_monHoin cc}

A Revamped testing

A Complex cache (tree) hierarchies aonfigexamplesiiemtesimemchedipy
A Randomly generated soak testuh/memtessoak.py
A For any changes to the memory system, please use these

MemChecker Gamd Monitor Monitor Monitor
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Ruby for Networks and Coherence

A As an alternative to its native memory system gemb5 also integrates Ruby

A Create networked interconnects based on domaipecific language (SLICC) for
coherence protocols

A Detalled statistics
A e.g., Request size/type distribution, state transition frequencies, etc...
A Detailed component simulation
A Network (fixed/flexible pipeline and simple) _
A Caches (Pluggable replacement policies) |
A Supports Alpha and x86

A Limited ARM support about to be added X
A Limited support for functional accesses

©ARM 2017 ARM
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Instantiating and Connecting Objects

class BaseCPU(MemObiject):
icache_port = MasterPort("Instruction Port")
dcache_port = MasterPort("Data Port")
é

class BaseCache(MemObject):
cpu_side = SlavePort("Port on side closer to CPU")
mem_side = MasterPort("Port on side closer to MEM")

class Bus(MemObiject):
slave = VectorSlavePort("vector port for connecting masters")
master = VectorMasterPort("vector port for connecting slaves")
é

system.cpu.icache_port = system.icache.cpu_side

system.cpu.dcache_port = system.dcache.cpu_side

system.icache.mem_side = system.|2bus.slave
system.dcache.mem_side = system.|2bus.slave

©ARM 2017
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Requests & Packets

A Protocol stack based on Requests and Packets
A Uniform across alMemObjects(with the exception of Ruby)
A Aimed at modelling general memenyapped interconnects

A A master module, e.g. a CPU, changes the state of a slave module, e.g. a memory through a
Request transported between master ports and slave ports using Packets

Request req(addr, size, flags, masterid);
Packet* req_pkt = new Packet(req, MemCmd::ReadReq);

>

if (req_pkt->needsResponse()) {
req_pkt->makeResponse();

} else {
delete req_pkt;

}

P
~

delete resp_pkt;

©ARM 2017 ARM




Requests & Packets

A Requestgontain information persistent throughout a transaction
A Virtual/physical addresses, size
A MasterIDuniquely identifying the module initiating the request
A Stats/debug info: PC, CPU, and thread ID

A Requests are transported as Packets
A Command ReadReyVriteReqg, ReadResetc.) MemCmd
A Address/size (may differ from request, e.g., block aligned cache miss)
A Pointer to request and pointer to data (if any)
A Source & destination port identifiers (relative to interconnect)
A Used for routing responses back to the master
A Always follow the same path
A SenderStatepaque pointer
A Enables adding arbitrary information along packet path

90 ©ARM 2017
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Functional transport interface

A On a master port we send a request packet ussegdFunctional

A This in turn callsecvFunctionabn the connected slave port

A For a specific slave port we implement the desired functionality by overloastnéunctional
A Typically check internal (packet) buffers against request packet

A For a slave module, turn the request into a response (without altering state)

A For an interconnect module, forward the request through the appropriate master port using
sendFunctional

A Potentially after performing snoops by issusegdFunctionalSnoop

masterPort.sendFunctional(pkt); >  MySlavePort::recvFunctional(PacketPtr pkt)
/I packet is now a response {

©ARM 2017
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Atomic transport interface

A On a master port we send a request packet ussegdAtomic
A This in turn callsecvAtomicon the connected slave port
A For a specific slave port we implement the desired functionality by overloagtrg\tomic
A For a slave modul@erform any state updateand turn the request into a response
A For an interconnect modulg@erform any state updateand forward the request through the
appropriate master port usingendAtomic
A Potentially after performing snoops by issusegndAtomicSnoop
A Return an approximate latency

Tick latency = masterPort.sendAtomic(pkt); ———>  MysSlavePort::recvAtomic(PacketPtr pkt)
/I packet is now a response {

return latency;

}

©ARM 2017
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Timing transport interface

A On a master port wetry to send a request packet usisgndTimingReq

A This in turn callsecvTimingon the connected slave port

A For a specific slave port we implement the desired functionality by overloasing@imingReq
A Perform state updates and potentially forward request packet
A For a slave module, typically schedule an action to send a response at a later time

A A slave port can choose not to accept a request packet by returning false
A The slave port later has to cakendRetryRedo alert the master port to try again

bool success = masterPort.sendTimingReq(pkt); ————>  MySlavePort::recvTimingReq(PacketPtr pkt)
if (success) { {
Il request packet is sent assert(pkt->isRequest());
}else { return true/false;
/[ failed, wait for recvReqRetry from slave port }
}
©ARM 2017
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Ti ming transport 1 nterf

A Responses follow a symmetric pattern in thigposite direction
A On aslave portwe try to send aresponse packaiisingsendTiming
A This in turn callsecvTimingon the connectednaster port

A For a specific master port we implement the desired functionality by overloadawj iming

A Perform state updates and potentially forward response packet
A For a master module, typically schedule a succeeding request

A A master port can choose not to accept a response packet by returning false
A The master port later has to calendRetryResp alert the slave port to try again

MyMasterPort::recvTimingResp(PacketPtr pkt) «—— bool success = slavePort.sendTimingResp(pkt);
{ if (success) {

assert(pkt->isResponse()); Il response packet is sent

yelse { ...

return true/false;

}
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CPU models overview

BaseCPU

==

N o= -

\ \

/
BaseKvmCPU : : BaseSimpIeCPL:l TraceCPU DerivO3CPU MinorCPU
\

/

==

—_—— e o —_— e o = = = 7

ArmV8KvmCPU
X86KvmCPU AtomicSimpleCPU
A No timing A Some timing A Some timing A Full timing
A No caches A Caches A Caches A Caches |
A No BP A Limited BPs A No BPs A Branch predictors
A Realljast A Fast A Fast A Slow
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Atomic Simple CPU

A On every CPU tick() perform all
operations for an instruction

A Memory accesses use atomic
methods

A Fastest functional simulation
A Except for KVMaccelerated CPUs

©ARM 2017

Cycle

0

tick()

sendAtomic()

sendAtomic(

sendAtomic(

src/cpul/simple/atomic/*
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Timing Simple CPU
A Memory accesses use timing path

A CPU waits until memory access
returns

A Fast, provides some level of timing

©ARM 2017

src/cpu/simple/timing/*
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Detalled CPU Models

A Parameterizable pipeline models w/SMT support

A Two Types
A MinorCPUO Parameterizable tnrder pipeline model
A O3CPUOJ Parameterizable owutf-order pipeline model
AOExecute I n Executedo, detailed model
A Roughly an ordeof-magnitude slower than Simple
A Models the timing for each pipeline stage
A Forces both timing and execution of simulation to be accurate
A Important for Coherence, I/O, Multiprocessor Studies;
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INn-Order CPU Model

AModel s a estmgeaqipelihnar d o 4
A Fetchl, Fetch2, Decode, Execute

A Key Resources
A Cache, Executio®ranchPredictqretc.
A Pipeline stages

101 ©ARM 2017 ARM



Out-of-Order (O3) CPU Model

A Defaults to a #stage pipeline
A Fetch, Decode, Rename, Issue, Exetitagback, Commit
A Model varying amount of stages by changing the delay between them
A For examplefetchToDecodeDelay

A Key Resources
A Physical Registers, I1Q, LSQ, ROB, Functional Units

102 ©ARM 2017 ARM



Important CPU interfaces

A BaseCPU
A Base class for all CPU models
AProvides a common interface for checkpoint.

A Even used by KVMased CPUs

A ThreadContext
A Interface for accessing total architectural state of a single thread (PC, registers, etc.)
A Holds pointers to important structures (TLB, CPU, etc.)
A CPU models typically implement custom versions or 8gapleThread

A ExecContext
A Abstract interface defining how an instruction interface with the CPU model
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Staticlnst

A Represents a decoded instruction

A Has classifications of thest
A Corresponds to the binary machinast
A Only has static information

A Has all the methods needed to execute an instruction
A Tells whichregsare source andlest
A Contains the execute() function
A ISA parser generates execute() foriabts

105 ©ARM 2017
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Dyninst

A Complex CPU models need to track resources used by instructions

A Dynamic version o$taticlnst
A Used to hold extra information for ilight instructions
A Holds PC, Results, Branch Prediction Status
A Interface for TLB translations

A Specialized versions for detailed CPU models
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Examples

A Virtualizationbased CPUBaseKvmCPU
A Seesrc / cpu/ kvm/base.{ cc,hh } andsrc/cpu/kvm/BaseKvmCPU.py
A Implements the basic interfaces required by all CPU model
A Reasonably small and well documented
A Doesnotsimulate instructions or implemefixecContext
A Simplest possible simulated CFRAtomicSimpleCPU

A Seesrc / cpu/simple/{ base.cc,base.hh,atomic.cc,atomic.hh :
AtomicSimpleCPU.py}

A Minimal simulated CPU that includes SMT

ASI mpl est WMma&@PUOG model
A Seesrc / cpu/minor/*
A Implements a pipelined-order CPU

108 ©ARM 2017 ARM
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Accelerating gem5

A Switching modes

A Checkpoints
A boot Linux-> checkpoint
A run multiple configurations in parallel
A run multiple checkpoints in parallel

A Multi-threading
A multiple queues
A multiple workers execute events
A data sharing and tight coupling limits spee

A Multi-processed gem5
A for design space explorations

mi |
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Distributed gem5 simulation

A gemb5 running in parallel on a cluster of host machin

A Packet forwarding engine

A Forward packets among the simulated systems
A Synchronize the distributed simulation
A Simulate network topology

A Tested with ~30 nodes, 100s planned
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Object Diagram : Simulating andde Cluster Example

simulated compute

node

Root

NSGigE

TCPlface

simulated Ethernet switch | simulated compute
' node
Root
Root

NSGigE

TCPlface

TCP socket TCP socket




Elastic Trace# fast, realistic memory exploration
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Data Profiling and Heterogeneous Memory

A Address rising cost of communication
A Optimize data structures to improve cache utilization and efficiency
A Optimize data storage onto heterogeneous memories
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