
Title 44pt sentence case

Affiliations 24pt sentence case

20pt sentence case

© ARM 2017

Architectural Exploration with
gem5

Andreas Sandberg

Stephan Diestelhorst

William Wang

XiõAn: ASPLOS 2017

ARM Research

2017-04-09

© ARM 2017 2

Text 54pt sentence case This is an interactive presentation

Please ask questions!
Even if they are in:

Å English

Å Chinese

Å Swedish

Å German

© ARM 2017 3

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Agenda

ÁPresenters: Andreas Sandberg, William Wang, Stephan Diestelhorst (ARM Cambridge,
UK)

Á13:00 Introduction (10 min) ðStephan

Á13:10 Getting Started (15 min) ðWilliam

Á13:25 Configuration (25 min) ðAndreas

Á13:50 Debug & Trace (20 min) ðWilliam

Á14:10 Creating SimObjects(20 min) ðAndreas

Á14:30 Coffee Break (30 min)

Á15:00 Memory System (40 min) ðStephan

Á15:40 CPU Models (20 min) ðAndreas

Á16:00 Advanced Features (45 min) ðall

Á16:45 Contributing to gem5 (20 min) ðAndreas

© ARM 2017

What is gem5?

© ARM 2017 7

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Level of detail

ÁHW Virtualization

ÁVery no/limited timing

ÁThe same Host/guest ISA

ÁFunctional mode

ÁNo timing, chain basic blocks of instructions

ÁCan add cache models for warming

ÁTiming mode

ÁSingle time for execute and memory lookup

ÁAdvanced on bundle

ÁDetailed mode

ÁFull out-of-order, in-order CPU models

ÁHit-under-miss, reodering, é

µarch Exploration

HW Validation

Perf. Validation

Cycle Accurate

1ð50 KIPS

RTL simulation

High-level perf./power

Architecture exploration

Approximately Timed

0.2ð3 MIPS

gem5

Loosely Timed

50ð200 MIPS

Qemu

SW Dev

HW Virt.

gem5 + kvm

GIPS

© ARM 2017 8

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Users and contributors

ÁWidely used in academia and industry

ÁContributions from

ÁARM, AMD, Google,é

ÁWisconsin, Cambridge, Michigan, BSC, é
0

200

400

600

800

1000

1200

2011 2012 2013 2014 2015 2016

Publications with gem5

© ARM 2017 9

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

When not to use gem5

ÁPerformance validation

Á gem5 is not a cycle-accurate microarchitecture model!

ÁThis typically requires more accurate models such as RTL simulation.

ÁCommercial products such as ARM CycleModels operate in this space.

ÁCore microarchitecture exploration

ÁOnlydo this if you have a custom, detailed, CPU model!

Ágem5õs core models were not designed to replace more accurate microarchitectural models.

ÁTo validate functional correctness or test bleeding-edge ISA improvements

Á gem5 is not as rigorously tested as commercial products.

ÁNew (ARMv8.0+) or optional instructions are sometimes not implemented

ÁCommercial products such as ARM FastModels offer better reliability in this space.

© ARM 2017 10

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Why gem5?

ÁRuns real workloads

Á Analyze workloads that customers use and care about

Áé including complex workloads such as Android

ÁComprehensive model library

ÁMemory and I/O devices

Á Full OS, Web browsers

Á Clients and servers

ÁRapid earlyprototyping
Á New ideas can be tested quickly

Á System-level impact can be quantified

ÁSystem-level insights
Á Enables us to study complex

memory-system interactions

ÁCan be wired to custom models

Á Add detail where it matters, when it matters!

Ubuntu (Linux 4.x) Android Nougat

But not a microarchitectural

model out of the box!

© ARM 2017

Getting Started

William Wang

© ARM 2017 13

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Prerequisites

ÁOperating system:

Á OSX, Linux

Á Limited support for Windows 10 with a Linux environment

ÁSoftware:

Á git

Á Python 2.7 (dev packages)

Á SCons

Á gcc4.8 or clang 3.1 (or newer)

Á SWIG 2.0.4 or newer

Á make

ÁOptional:

Á dtc (to compile device trees)

Á ARMv8 cross compilers (to compile workloads)

Á python-pydot (to generate system diagrams)

© ARM 2017 14

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Compiling gem5

ÁGuest architecture

ÁSeveral architectures in the source

tree.

ÁMost common ones are:

ÁARM

ÁNULL ðUsed for trace-drive simulation

ÁX86 ðPopular in academia, but very

strange timing behavior

ÁOptimization level:

Á debug: Debug symbols, no/few

optimizations

Á opt : Debug symbols + most

optimizations

Á fast: No symbols + even more

optimizations

$ scons build/ARM/gem5.opt

© ARM 2017 15

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Compiling gem5õs device trees

1. sudo apt install device - tree - compiler

2. make ïC system/arm/ dt

ÁDevice trees are used to describe hard-to-discover devices

Áarmv8_gem5_v1_ Ncpu.dtb

ÁTraditional CMP/SMP configuration with N cores

ÁBuilt from armv8.dts and platforms/vexpress_gem5_v1.dtsi

Áarmv8_gem5_v1_big_little_ M_N.dtb

Á bigLittleconfigurationswith M bigcoresandN smallcores

ÁBuilt from armv8.dts and platforms/vexpress_gem5_v1.dtsi

© ARM 2017 16

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Compiling Linux for gem5

1. sudo apt install gcc - aarch64 - linux - gnu

2. git clone - b gem5/v4.4 https://github.com/gem5/linux - arm- gem5

3. cd linux - arm- gem5

4. make ARCH=arm64 CROSS_COMPILE=aarch64 - linux - gnu- gem5_defconfig

5. make ARCH=arm64 CROSS_COMPILE=aarch64 - linux - gnu- - j ` nproc `

ÁBuilds the default kernel configuration for gem5

ÁHas support for most of the devices that gem5 supports

https://github.com/gem5/linux-arm-gem5

© ARM 2017 17

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Example disk images

ÁExample kernels and disk images can be downloaded from gem5.org/Download

ÁThis includes pre-compiled boot loaders

ÁOld but useful to get started

ÁDownload and extract this into a new directory:
Áwget http://www.gem5.org/dist/current/arm/aarch - system - 2014 - 10.tar.xz

Ámkdir dist ; cd dist

Á tar xvf ../aarch - system - 2014 - 10.tar.xz

ÁSet the M5_PATH variable to point to this directory:

Á export M5_PATH=/path/to/dist

ÁMost example scripts try to find files using M5_PATH

ÁKernels/boot loaders/device trees in ${M5_PATH}/binaries

ÁDisk images in ${M5_PATH}/disks

http://www.gem5.org/dist/current/arm/aarch-system-2014-10.tar.xz

© ARM 2017 18

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Running an example script

ÁSimulates a bL system with 1+1 cores

ÁUses a functional ôatomicõ CPU model

ÁUse the ôtimingõ CPU type for an example OoO + InO configuration

$ build/ARM/gem5.opt configs/example/arm/fs_bigLITTLE.py \

--kernel path/to/vmlinux\

--cpu-type atomic \

--dtb $PWD/system/arm/dt/armv8_gem5_v1_big_little_1_1.dtb \

--disk your_disk_image.img

© ARM 2017 19

Text 54pt sentence case Demo

© ARM 2017

Configuration and Control

Andreas Sandberg

© ARM 2017 21

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Design philosophy

Ágem5 is conceptually a Python library implemented in C++

ÁConfigured by instantiating Python classes with matching C++ classes

ÁModel parameters exposed as attributes in Python

ÁRunning is controlled from Python, but implemented in C++

ÁConfiguration and running are two distinct steps

ÁConfiguration phase ends with a call to instantiate the C++ world

ÁParameters cannot be changed after the C++ world has been created

© ARM 2017 22

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Useful tricks

Ágem5 can be launched interactively

ÁUse the - i option

ÁPretty prompt if ipythonhas been installed

ÁStill requires a simulation script

ÁIgnore configs/example/{ fs,se }. py and configs/common/FSConfig.py

ÁFar too complex

ÁTries to handle every single use case in a single configuration file

ÁGood configuration examples:

Á configs/learning_gem5/

Á configs/example/arm/

© ARM 2017 23

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Simulated system

C++

Python

Control flow

Instantiate objects

Instantiate C++

objects

m5.instantiate()

Create Python

objects
Run simulation

m5.simulate()

Simulate in C++

Running guest

code

C
a

llb
a

c
k

E
x
it
 e

v
e

n
t

Run simulation

m5.simulate()

Simulate in C++

Running guest

code

C
a

llb
a

c
k

E
x
it
 e

v
e

n
t

© ARM 2017 24

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

General structure

ÁThe simulator contains exactly one Root object

ÁControls global configuration options

Á root = Root(full_system =True)

ÁThe root object contains one or more System instances

ÁA system represents a shared memory machine

ÁContains devices, CPUs, and memories

ÁMultiple system may be connected using network interfaces

ÁCluster on cluster simulation

ÁNot within the scope of this presentation

© ARM 2017 25

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

System Overview

© ARM 2017 26

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Creating a òsimpleó system

ÁThe system contains basic platform devices

Á Interrupt controllers, PCI bridge, debug UART

ÁSets up the boot loader and kernel as well

ÁSee examples in config/example/arm:

ÁSimpleSystem (devices.py) defines a basic ARM system with PCI support

Á Instantiated by createSystem () in fs_bigLITTLE.py

© ARM 2017 27

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Overriding model parameters

import m5

class L1DCache(m5.objects.Cache):

assoc = 2

size = '16kB'

class L1ICache(L1DCache):

assoc = 16

l1i = L1ICache(assoc=8,

repl=m5.objects.RandomRepl())

ÅUse defaults from L1DCache

ÅOverride associativity again

ÅUse gem5õs base Cache

ÅOverride associativity

ÅOverride size

ÅOverride parameters at

instantiation time

ÅWeõll cover memory ports later

© ARM 2017 28

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Running

m5.instantiate()

event = m5.simulate()

print 'Exiting @ tick % i : %s' \

% (m5.curTick(),

event.getCause ())

m5.simulate(m5.tick.fromSeconds(0.1))

ÅInstantiate the C++ world

ÅStart the simulation

ÅPrint why the simulator exited

ÅSometimes desirable to call

m5.simulate() again.

ÅRun for a fixed number of

simulated seconds

© ARM 2017 29

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Creating Checkpoints

m5.checkpoint(' name.cpt ')

ÁCheckpoints can be used to store the simulatorõs state

ÁCan be used to implement SimPointsor similar methodologies

ÁCheckpoint limitations:

ÁThe act of taking a checkpoint affects system state!

ÁCheckpoints donõt store cache state

ÁCheckpoints donõt store pipeline state

© ARM 2017 30

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Restoring Checkpoints

m5.instantiate(' name.cpt ')

event = m5.simulate()

ÅInstantiate system and load

state from checkpoint

ÅRun in the same way as before

© ARM 2017 31

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Guest to simulation script communication

system.exit_on_work_items = True

é

event = m5.simulate()

#include "m5op.h"

m5_work_begin(id, 0);

// Region of interest

m5_work_end(id, 0);

ÅWork item handling in Python

ÅExit event will contain

information about work items

ÅInclude the m5op header

ÅRemember to link with libm5.a

ÅAnnotate your regions of

interest

© ARM 2017 32

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Exit Events

event.getCause () event.getCode () Description

user interrupt received - User pressed Ctrl+C

simulate() limit reached - gem5 reached the specified

time limit

m5_exit instruction

encountered

Exit code from guest Guest executed m5_exit()

m5_fail instruction

encountered

Failure code from guest Guest executed m5_fail()

checkpoint - Guest executed

m5_checkpoint()

workbegin/workend Work item ID Guest work item annotation

© ARM 2017 33

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Dumping statistics

ÁCan be requested from Python:

Ám5.stats.dump(): Dump statistics

Ám5.stats.reset() : Reset stat counters

ÁGuest command line:
Ám5 dumpstats [[delay] [period]]

Ám5 dumpresetstas [[delay] [period]]

ÁGuest code using libm5.a:

Ám5_dump_stats(delay, periodicity): Dump statistics

Ám5_dumpreset_stats(delay, periodicity): Dump & reset statistics

© ARM 2017 34

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Examples

ÁSimple full system configuration file: ARM big.LITTLEconfiguration example

Á configs/example/arm/{fs_bigLittle.py, devices.py}

ÁDemonstrates how to setup a single system

ÁReasonably small and well documented

ÁDistributed multi-system configuration:

Á configs/example/arm/dist_bigLittle.py

ÁReuses the configuration file above

ÁSimple syscallemulation mode example: Jason Lowe-Powerõs Learning gem5

Á configs/learning_gem5/part1

© ARM 2017

Debugging

William Wang

© ARM 2017 36

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Debugging Facilities

ÁTracing

Á Instruction tracing

ÁDiffing traces

ÁUsing gdbto debug gem5

ÁDebugging C++ and gdb-callable functions

ÁRemote debugging

ÁPipeline viewer

© ARM 2017 37

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Tracing/Debugging

Áprintf () is a nice debugging tool
Á Keep good print statements in code and selectively enable them

Á Lots of debug output can be a very good thing when a problem arises

Á Use DPRINTFs in code

Á DPRINTF(TLB, "Inserting entry into TLB with pfn :%#xé)

ÁExample flags:
Á Fetch, Decode, Ethernet, Exec, TLB, DMA, Bus, Cache, O3CPUAll

Á Print out all flags with ./build/ARM/gem5.opt -- debug - help

ÁEnabled on the command line
Á -- debug - flags=Exec

Á -- debug - start=30000

Á -- debug - file= my_trace.out

Á Enable the flag Exec; Start at tick 30000 ; Write to my_trace.out

© ARM 2017 38

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Sample Run with Debugging

22:44:28 [/work/gem5] ./build/ARM/gem5. opt -- debug - flags=Decode --

debug - start= 50000 -- debug - file= my_trace.out configs /example/ se.py - c

tests/test - progs /hello/bin/arm/ linux /hello

é

**** REAL SIMULATION ****

info: Entering event queue @ 0. Starting simulation...

Hello world!

Exiting @ tick 3107500 because target called exit()

Command Line:

my_trace.out:

2:44:47 [/ work /gem5] head m5out/ my_trace.out

50000: system.cpu : Decode : Decoded cmps instruction : 0xe353001e

50500: system.cpu : Decode : Decoded ldr instruction : 0x979ff103

51000: system.cpu : Decode : Decoded ldr instruction : 0xe5107004

51500: system.cpu : Decode : Decoded ldr instruction : 0xe4903008

52000: system.cpu : Decode : Decoded addi_uop instruction : 0xe4903008

52500: system.cpu : Decode : Decoded cmps instruction : 0xe3530000

53000: system.cpu : Decode : Decoded b instruction : 0x1affff84

53500: system.cpu : Decode : Decoded sub instruction : 0xe2433003

54000: system.cpu : Decode : Decoded cmps instruction : 0xe353001e

54500: system.cpu : Decode : Decoded ldr instruction : 0x979ff103

© ARM 2017 39

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Adding Your Own Flag

ÁPrint statements put in source code

ÁEncourage you to add ones to your models or contribute ones you find particularly useful

ÁMacros remove them from the gem5.fast binary

ÁThere is no performance penalty for adding them

ÁTo enable them you need to run gem5.opt or gem5.debug

ÁAdding one with an existing flag
ÁDPRINTF(<flag>, ñnormal printf %s\ nò, ñargumentsò);

ÁTo add a new flag add the following in a Sconscript

Á DebugFlag (óMyNewFlagô)

ÁInclude corresponding header, e.g. #include ñdebug/MyNewFlag.hh ò

© ARM 2017 40

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Instruction Tracing

ÁSeparate from the general debug/trace facility

ÁBut both are enabled the same way

ÁPer-instruction records populated as instruction executes

ÁStart with PC and mnemonic

ÁAdd argument and result values as they become known

ÁPrinted to trace when instruction completes

ÁFlags for printing cycle, symbolic addresses, etc.

2:44:47 [/ work /gem5] head m5out/ my_trace.out

50000 : T0 : 0x14468 : cmps r3, #30 : IntAlu : D=0x00000000

50500: T0 : 0x1446c : ldrls pc, [pc, r3 LSL #2] : MemRead : D=0x00014640 A=0x14480

51000: T0 : 0x14640 : ldr r7, [r0, # - 4] : MemRead : D=0x00001000 A=0xbeffff0c

51500: T0 : 0x14644 .0 : ldr r3, [r0] #8 : MemRead : D=0x00000011 A=0xbeffff10

52000: T0 : 0x14644 .1 : addi_uop r0, r0, #8 : IntAlu : D=0xbeffff18

52500: T0 : 0x14648 : cmps r3, #0 : IntAlu : D=0x00000001

53000: T0 : 0x1464c : bne : IntAlu :

© ARM 2017 41

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Using GDB with gem5

ÁSeveral gem5 functions are designed to be called from GDB

Á schedBreakCycle () ðalso with -- debug - break

Á setDebugFlag ()/ clearDebugFlag ()

Á dumpDebugStatus ()

Á eventqDump ()

ÁSimObject ::find()

Á takeCheckpoint ()

© ARM 2017 42

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Using GDB with gem5
2:44:47 [/work/gem5] gdb -- args ./build/ARM/gem5.opt

configs /example/ fs.py

GNU gdb Fedora (6.8 - 37.el5)

...(gdb) b main

Breakpoint 1 at 0x4090b0: file build/ARM/ sim / main.cc , line 40.

(gdb) run

Breakpoint 1, main (argc =2, argv =0x7fffa59725f8) at

build/ARM/ sim / main.cc

main(int argc , char ** argv)

(gdb) call schedBreakCycle (1000000)

(gdb) continue

Continuing.

gem5 Simulator System

...

0: system.remote_gdb.listener : listening for remote gdb #0 on

port 7000

**** REAL SIMULATION ****

info: Entering event queue @ 0. Starting simulation...

Program received signal SIGTRAP, Trace/breakpoint trap .

0x0000003ccb6306f7 in kill () from /lib64/libc.so.6

© ARM 2017 43

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Using GDB with gem5
(gdb) p _ curTick

$1 = 1000000

(gdb) call setDebugFlag ("Exec")

(gdb) call schedBreakCycle (1001000)

(gdb) continue

Continuing.

1000000: system.cpu T0 : @_stext+148. 1 : addi_uop r0, r0, #4 : IntAlu

: D=0x00004c30

1000500: system.cpu T0 : @_stext+152 : teqs r0, r6 : IntAlu :

D=0x00000000

Program received signal SIGTRAP, Trace/breakpoint trap.

0x0000003ccb6306f7 in kill () from /lib64/libc.so.6
(gdb) print SimObject ::find(" system.cpu ")

$2 = (SimObject *) 0x19cba130

(gdb) print (BaseCPU*) SimObject ::find(" system.cpu ")

$3 = (BaseCPU *) 0x19cba130

(gdb) p $3 - >instCnt

$4 = 431

© ARM 2017 44

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Diffing Traces

ÁOften useful to compare traces from two simulations
Á Find where known good and modified simulators diverge

ÁStandard diff only works on files (not pipes)

Áébut you really donõt want to run the simulation to completion first

Áutil / rundiff

Á Perl script for diffing two pipes on the fly

Áutil / tracediff

Á Handy wrapper for using rundiff to compare gem5 outputs

Á tracediff ña/gem5.opt|b/gem5.optò ïdebug - flags=Exec

Á Compares instructions traces from two builds of gem5

Á See comments for details

© ARM 2017 45

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Advanced Trace Diffing

ÁSometimes if you run into a nasty bug itõs hard to compare apples-to-apples traces

Á Different cycles counts, different code paths from interrupts/timers

ÁSome mechanisms that can help:

Á - ExecTicks donõt print out ticks

Á - ExecKernel donõt print out kernel code

Á - ExecUser donõt print out user code

Á ExecAsid print out ASID of currently running process

ÁState trace

Á PTRACE program that runs binary on real system and compares cycle-by-cycle to gem5

Á Supports ARM, x86, SPARC

Á See wiki for more information [http://gem5.org/Trace_Based_Debugging]

© ARM 2017 46

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Checker CPU

ÁRuns a complex CPU model such as the O3 model in tandem with a special

Atomic CPU model

ÁChecker re-executes and compares architectural state for each instruction

executed by complex model at commit

ÁUsed to help determine where a complex model begins executing instructions

incorrectly in complex code

ÁChecker cannot be used to debug MP or SMT systems

ÁChecker cannot verify proper handling of interrupts

ÁCertain instructions must be marked unverifiable i.e. òwfió

© ARM 2017 47

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Remote Debugging
./build/ARM/gem5.opt configs /example/ fs.py

gem5 Simulator System

...

command line: ./build/ARM/gem5.opt configs /example/ fs.py

Global frequency set at 1000000000000 ticks per second

info: kernel located at: / dist /binaries/ vmlinux.arm

Listening for system connection on port 5900

Listening for system connection on port 3456

0: system.remote_ gdb.listener : listening for remote gdb #0 on

port 7000 info: Entering event queue @ 0. Starting

simulation...

© ARM 2017 48

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Remote Debugging
GNU gdb (Sourcery G++ Lite 2010.09 - 50) 7.2.50.20100908 - cvs

Copyright (C) 2010 Free Software Foundation, Inc.

...

(gdb) symbol - file / dist /binaries/ vmlinux.arm

Reading symbols from / dist /binaries/ vmlinux.arm ...done.

(gdb) set remote Z - packet on

(gdb) set tdesc filename arm - with - neon.xml

(gdb) target remote 127.0.0.1:7000

Remote debugging using 127.0.0.1:7000

cache_init_objs (cachep =0xc7c00240, flags=3351249472) at

mm/slab.c:2658

(gdb) step

sighand_ctor (data=0xc7ead060) at kernel/fork.c:1467

(gdb) info registers

r0 0xc7ead060 - 940912544

r1 0x5201312

r2 0xc002f1e4 - 1073548828

r3 0xc7ead060 - 940912544

r4 0x00

r5 0xc7ead020 - 940912608

é

ARMv7 only, ARMv8 doesnõt need

© ARM 2017 50

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

O3 Pipeline Viewer
Use -- debug - flags=O3PipeView and util /o3 - pipeview.py

© ARM 2017

Adding new models

Andreas Sandberg

© ARM 2017 52

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

How are models implemented

Python

wrappers

Parameter

structs
C++ model

Generates
Python

description

Describes parameters and

exported methods

Implements your model Includes

© ARM 2017 53

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

How are models instantiated

C++ model

Python objectSimulation script
Python

wrappers

Parameter

struct

obj = MyObj() m5.instantiate()

MyObjParams::create()

Instantiate and populate

MyObjParams

© ARM 2017 54

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Discrete event based simulation

ÁDiscrete: Handles time in discrete steps

ÁEach step is a tick

ÁUsually 1THz in gem5

ÁSimulator skips to the next event on the timeline

Time

Event handler

Event handlerMyObj::startup()
Schedule

Call

© ARM 2017 55

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Creating a SimObject

ÁDerive Python class from Python SimObject

Á Define parameters, ports and configuration

Á Parameters in Python are automatically turned into C++ struct and passed to C++ object

Á Add Python file to SConscript

Á Or, place it in an existing Python file

ÁDerive C++ class from C++ SimObject

Á Defines the simulation behavior

Á See src / sim / sim_object .{ cc,hh }

Á Add C++ filename to SConscript in directory of new object

Á Need to make sure you have a create factory method for the object

Á Look at the bottom of an existing object for info

ÁRecompile

© ARM 2017 56

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

SimObjectinitialization

Instantiation

ÅUses a factory method:
MyObjectParams::create()

Register stats

ÅMyObject::regStats()

Initialize architectural
state

ÅMyObject::initState()

Reset stats

ÅMyObject::resetStats()

Start model

ÅMyObject::startup()

© ARM 2017 57

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Parameters and SimObjects

ÁParameters to SimObjectsare synthesized from Python structures

ÁObject hierarchy in Python reflects the C++ world

ÁThis example is from src/dev/arm/Realview.py

class Pl011(Uart):

type = 'Pl011'

cxx_header = "dev/arm/pl011.hh"

gic = Param.Gic (Parent.any , " Gic to use for interrupting")

int_num = Param.UInt32("Interrupt number that connects to GIC")

end_on_eot = Param.Bool (False, "End the simulation when é")

int_delay = Param.Latency ("100ns", "Time between action é")

Python class name Python base class

C++ class

Parameter type

Default value

Parameter DescriptionParameter name

C++ header

© ARM 2017 58

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

SimObjectParameters

ÁParameters can be:

ÁScalars ðParam.Unsigned(5), Param.Float(5.0), Param.UInt32(42), é

ÁArrays ðVectorParam.Unsigned([1,1,2,3])

ÁSimObjectsðParam.PhysicalMemory(é)

ÁArrays of SimObjectsðVectorParam.PhysicalMemory(Parent.any)

ÁMemory address rangesðParam. AddrRange(0,Addr.max))

ÁNormally converted from strings with units :

Á Latency ðParam.Latency(õ15nsõ) Tick

ÁFrequency ðParam.Frequency(ô100MHzõ) -> Tick

ÁMemorySizeðParam.MemorySize(ô1GBõ) -> Bytes

ÁTime ðParam.Time(ôMon Mar 25 09:00:00 CST 2012õ)

ÁEthernet Address ðParam.EthernetAddr(ò90:00:AC:42:45:00ó)

© ARM 2017 59

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Auto-generated Header file
#ifndef __PARAMS__Pl011__

#define __PARAMS__Pl011__

class Pl011;

#include < cstddef >

#include "base/ types.hh ò

#include " params / Gic.hh "

##include "base/ types.hh "

#include " params / Uart.hh "

struct Pl011Params

: public UartParams

{

Pl011 * create();

uint32_t int_num ;

Gic * gic ;

bool end_on_eot ;

Tick int_delay ;

};

#endif // __PARAMS__Pl011__

class Pl011(Uart):

type = 'Pl011'

gic = Param.Gic (Parent.any , é)

int_num = Param.UInt32(é)

end_on_eot = Param.Bool (False, "End é)

int_delay = Param.Latency ("100ns", "Time é")

Factory method

© ARM 2017 60

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

How Parameters are used in C++

Pl011::Pl011(const Pl011Params *p)

: Uart (p), é,

intNum (p- >int_num), gic (p- >gic),

endOnEOT(p- >end_on_eot), intDelay (p- >int_delay)

{

é

}

You can also access parameters through params() accessorafter instantiation.

src/dev/arm/pl011.cc:

© ARM 2017 61

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Creating/Using Events

ÁOne of the most common things in an event driven simulator is

scheduling events

ÁDeclaring events and handlers is easy:

ÁScheduling them is easy too:

/* Handle when a timer event occurs */

void timerHappened ();

EventWrapper <MyClass , & MyClass :: timerHappend > event;

/* something that requires me to schedule an event at time t*/

if (event.scheduled ())

reschedule(event, curTick () + t);

else

schedule(event, curTick () + t);

© ARM 2017 62

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

CheckpointingSimObjectState

ÁIf your object has state, that needs to be written to the checkpoint

ÁCheckpointing takes place on a drainedsimulator

ÁDraining ensures that microarchitectural state is flushed

ÁModels may need to flush pipelines and wait for outstanding requests to finish.

ÁCheckpoint implemented by overriding
SimObject ::serialize(CheckpointOut &)

ÁSave necessary state

ÁNo need to store parameters from the config systyem!

ÁUse SERIALIZE_*() macros or paramOut

ÁTo implement restore, override
SimObject :: unserialize (CheckpointIn &)

ÁUse UNSERIALIZE_*() macros or paramIn

© ARM 2017 63

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Creating a checkpoint

Trigger checkpointing

ÅScript call:
m5.checkpoint(òmy.cptó)

Drain the simulator

ÅEnsures a well-defined
architectural state

ÅFlushes CPU pipelines

ÅWrites back caches

Serialize objects

ÅMyObject::serialize(
CheckpointOut&)

Resume simulation

ÅScript call:
m5.simulate()

Resume drained objects

ÅMyObject::drainResume()

© ARM 2017 64

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Restoring from a checkpoint

Instantiation

ÅUses a factory method:
MyObjectParams::create()

Register stats

ÅMyObject::regStats()

Restore architectural
state

ÅMyObject ::unserialize (
CheckpointIn &)

Reset stats

ÅMyObject::resetStats()

Start model

ÅMyObject::startup()

Resume system

ÅMyObject ::drainResume ()

© ARM 2017 65

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Draining

Script requests draining

All objects

drained

Call SimObject::drain()

Done

No

Yes

Simulate until

signalDrainDone()

ÅFlush internal state

ÅStop producing new

messages

© ARM 2017 66

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Checkpointing Example

// uint16_t control;

void

Pl011::serialize(CheckpointOut&cp) const

{

SERIALIZE_SCALAR(control);

}

void

Pl011::unserialize(CheckpointIn&cp)

{

UNSERIALIZE_SCALAR(control);

}

© ARM 2017 67

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Good Examples

ÁSimple IO devices: IsaFake

ÁSee: src /dev/ isa_fake .{ cc,hh } and src/dev/Device.py

ÁDemonstrates a basic memory-mapped device using the BasicPioDevice base class

ÁPCI devices: PciVirtIO

ÁSee: src /dev/ virtio / pci .{ cc,hh } and src/dev/VirtIO.py

ÁPCI device with a single BAR and interrupts

ÁMore complex PCI device: CopyEngine

ÁSee: src /dev/ pci / copy_engine .{ cc,hh } and src/dev/pci/CopyEngine.py

ÁPCI device with DMA support

ÁPython exports: PowerModelState

ÁSee: src/sim/power/PowerModelState.py

ÁExports two methods (getDynamicPower & getStaticPower) to Python

© ARM 2017 68

Text 54pt sentence case <Insert coffee break here>

© ARM 2017

Memory System

Stephan Diestelhorst

© ARM 2017 70

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Goals

ÁModel a system with heterogeneousapplications, running on a set of

heterogeneousprocessing engines, using heterogeneousmemories and

interconnect
Á CPU centric: capture memory system behaviour accurate enough

Á Memory centric: Investigate memory subsystem and interconnect architectures

Interconnect

Processo

r
Processo

r
Processo

rCPU

Video

backend

Video

decoder
GPUGPU

GPU
GPU

DMA

DRAMDRAM
DRAM

3D-

DRAMSRAM NAND
NAND

PCM STT-RAM

Interconnect

© ARM 2017 71

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Goals, contd.

ÁTwo worlds...

ÁComputation-centric simulation

Á e.g. SimpleScalar, Asimetc

ÁMore behaviourally oriented, with ad-hoc ways of describing parallel behaviours and

intercommunication

ÁCommunication-centric simulation

Á e.g. SystemC+TLM2 (IEEE standard)

ÁMore structurally oriented, with parallelism and interoperability as a key component

Ágem5 is trying to balance

ÁEasy to extend (flexible)

ÁEasy to understand (well defined)

ÁFast enough (to run full-system simulation at MIPS)

ÁAccurate enough (to draw the right conclusions)

© ARM 2017 72

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Event Simulation

ÁEvent-driven

Á no activity -> no clocking

Á event queue

ÁDeterministic

Á fixed random number seed

Á no dependence on host addresses

ÁMulti-Queue

Ámultiple workers

event queue

cache lookup

ti
m

e

curTick

cache

response

Cache Model

© ARM 2017 73

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Ports, Masters and Slaves

ÁMemObjectsare connected through master and slave ports

ÁA master module has at least one master port, a slave module at least one slave

port, and an interconnect module at least one of each

ÁA master port always connects to a slave port

ÁSimilar to TLM-2 notation

CPU

memory0

bus

memory1

Master

module

Interconnect

module

Slave

module

Slave portMaster port

I$

D

$

© ARM 2017 74

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Transport interfaces

ÁAtomic

ÁSimilar to loosely timed in TLM

ÁBlocking: Requests completes in a single call chain

ÁEach component along the way adds latency to the request

ÁTiming

ÁSimilar to approximately timed in TLM

ÁAsynchronous: One call to send a packet, callbackwhen response is ready.

ÁFunctional

ÁDebug interface that doesnõt affect coherency states.

ÁBlocking: Requests complete within a single call chain.

The Atomic and Timing

interfaces are mutually

exclusive

© ARM 2017 75

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Communication Monitor

ÁInsert as a structural component where stats are desired
memmonitor = CommMonitor()

membus.master = memmonitor.slave

memmonitor.master = memctrl.slave

ÁA wide range of communication stats

Á bandwidth, latency, inter-transaction (read/write) time, outstanding transactions, address

heatmap, etc

ÁProvides an attachment point for communication probes:

ÁTracing (using protobuf)

ÁStack distance monitoring

ÁFootprint estimation

0
10
20
30
40
50
60
70

D
is

tr
ib

u
ti
o
n

 (
%

)

Latency (ns)

Latency distribution

© ARM 2017 76

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Traffic generator

ÁTest scenarios for memory system regression and performance validation

ÁHigh-level of control for scenario creation

ÁBlack-box models for components that are not yet modeled

ÁVideo/baseband/accelerator for memory-system loading

ÁInject requests based on (probabilistic) state-transition diagrams

Á Idle, random, linear and trace replay states

idle

linear

Address

Time

linear linear linearidle idle

© ARM 2017 77

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Memory controllers

ÁAll memories in the system inherit from AbstractMemory

ÁBasic single-channel memory controller

Á Instantiate multiple times if required

Á Interleaving support added in the bus/crossbar (to be posted)

ÁSimpleMemory

ÁFixed latency (possibly with a variance)

ÁFixed throughput (request throttling without buffering)

ÁSimpleDRAM

ÁHigh-level configurable DRAM controller model to mimic DDRx, LPDDRx, WideIO, HBM etc

ÁMemory organization: ranks, banks, row-buffer size

ÁController architecture: Read/write buffers, open/close page, mapping, scheduling policy

ÁKey timing constraints: tRCD, tCL, tRP, tBURST, tRFC, tREFI, tTAW /tFAW

© ARM 2017 78

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Top-down controller model

ÁDonõt model the actual DRAM, only the timing constraints

ÁDDR3/4, LPDDR2/3/4, WIO1/2, GDDR5, HBM, HMC, even PCM

ÁSee src/mem/DRAMCtrl.pyand src/mem/dram_ctrl.{hh, cc}

DRAM Memory Controller

S
y
s
te

m
 in

te
rfa

c
e

s

write queue

read queue

P
a

g
e

 p
o

lic
y
 &

 a
rb

itra
tio

n

P
H

Y
 &

 tim
in

g
 c

o
n

s
tra

in
ts

Device width

Burst length

#ranks, #banks

Page size

tRCD

tCL

tRP

tRAS

tBURST

tRFC& tRFEI

tWTR

tRRD

tFAW/tTAW

é

Hansson et al, Simulating DRAM controllers for future system architecture exploration, ISPASSõ14

© ARM 2017 79

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Controller model correlation

ÁComparing with a real memory controller

ÁSynthetic traffic sweeping bytes per activate and number of banks

ÁSee configs/dram/sweep.pyand util/dram_sweep_plot.py

gem5 model Real memory controller

64
128

192
256

0

20

40

60

80

100

8
7

6
5

4
3

2
1

80-100

60-80

40-60

20-40

0-20

Number of Banks Bytes per

Activate
64

128

192
256

0

20

40

60

80

100

8
7

6
5

4
3

2
1

80-100

60-80

40-60

20-40

0-20

Number of Banks
Bytes per

Activate

© ARM 2017 80

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

ÁDRAM accounts for a large portion of system power

ÁNeed to capture power states, and system impact

ÁIntegrated model opens up for developing more clever strategies

ÁDRAMPoweradapted and adopted for gem5 use-case

DRAM power modeling

Å Active Energy

Å Precharge Energy

Å Read/Write Energy

Å Background Energy

Å Refresh Energy
0 5 1015202530354045505560657075808590

AndeBench

bbench

GPU-AngryBirds

Energy Saving due to Power -Down (%)

Energy Saving due to

Power-Down (%)

64%

36%

Static Energy(mJ)

Dynamic Energy(mJ)

BBench DRAM Energy Analysis (LPDDR3 x32)

Naji et al, A High-Level DRAM Timing, Power and Area Exploration Tool, SAMOSõ15

© ARM 2017 81

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

ÁMulti-channel memory support is essential

ÁEmerging DRAM standards are multi-channel by nature

(LPDDR4, WIO1/2, HBM1/2, HMC)

ÁInterleaving support added to address range

ÁUnderstood by memory controller and interconnect

ÁSee src/base/addr_range.hhfor matching and

src/mem/xbar.{hh, cc} for actual usage

Á Interleaving not visible in checkpoints

ÁXOR-based hashing to avoid imbalances

ÁSimple yet effective, and widely published

ÁSee configs/common/MemConfig.pyfor system configuration

Address interleaving

Source: Micron

© ARM 2017 82

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Crossbars& Bridges

ÁCreate rich system interconnect topologies using

a simple bus model and bus bridge

ÁCrossbars do address decoding and arbitration

ÁDistributes snoops and aggregates snoop responses

ÁRoutes responses

ÁConfigurable width and clock speed

ÁBridges connects two buses

ÁQueues requests and forwards them

ÁConfigurable amount of queuing space for requests and

responses

XBar

Core

L1i L1d

XBar

L2

L1i L1d

XBar

Core

...

XBar

XBar XBarBridge

© ARM 2017 83

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Caches

ÁSingle cache model with several components:

ÁCache: request processing, miss handling, coherence

ÁTags: data storage and replacement (LRU, Random, etc.)

ÁPrefetcher: N-Block Ahead, Tagged Prefetching, Stride

Prefetching

ÁMSHR & MSHRQueue: track pending/outstanding

requests

ÁAlso used for write buffer

ÁParameters: size, hit latency, block size, associativity,

number of MSHRs (max outstanding requests)

Data

Tags

Cache

Prefetch

MSHR

© ARM 2017 84

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Coherence protocol

ÁMOESI bus-based snooping protocol

ÁSupport nearly arbitrary multi-level hierarchies at the expense of some realism

ÁDoes not enforce inclusion

ÁMagic òexpress snoopsó propagate upward in zero time

ÁAvoid complex race conditions when snoops get delayed

ÁTiming is similar to some real-world configurations

Á L2 keeps copies of all L1 tags

Á L2 and L1s snooped in parallel

© ARM 2017 85

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

ÁBroadcast-based coherence protocol

Á Incurs performance and power cost

ÁDoes not reflect realistic implementations

ÁSnoop filter goes one step towards directories

ÁTrack sharers, based on writebackand clean eviction

ÁDirect snoops and benefit from locality

ÁMany possible implementations

ÁCurrently ideal (infinite), no back invalidations

ÁCan be used with coherent crossbars on any level

ÁSee src/mem/SnoopFilter.pyand

src/mem/snoop_filter.{hh, cc}*

Snoop (probe) filtering

Source: AMD

© ARM 2017 86

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

ÁCheck adherence to consistency model

ÁNotion of functional reference memory is too simplistic

ÁNeed to track valid values according to consistency

model

ÁMemory checker and monitors

ÁTracking in src/mem/MemChecker.pyand

src/mem/mem_checker.{hh, cc}

ÁProbing in src/mem/mem_checker_monitor.{hh, cc}

ÁRevamped testing

ÁComplex cache (tree) hierarchies in configs/examples/{memtest, memcheck}.py

ÁRandomly generated soak test in util/memtest-soak.py

ÁFor any changes to the memory system, please use these

Memory system verification

L2

MemChecker

Core 1

Monitor

L1

XBar

Core 0

Monitor

L1

Core 2

Monitor

L1

© ARM 2017 87

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Ruby for Networks and Coherence

ÁAs an alternative to its native memory system gem5 also integrates Ruby

ÁCreate networked interconnects based on domain-specific language (SLICC) for

coherence protocols

ÁDetailed statistics

Á e.g., Request size/type distribution, state transition frequencies, etc...

ÁDetailed component simulation

ÁNetwork (fixed/flexible pipeline and simple)

ÁCaches (Pluggable replacement policies)

ÁSupports Alpha and x86

Á Limited ARM support about to be added

Á Limited support for functional accesses

© ARM 2017 88

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Instantiating and Connecting Objects

class BaseCPU(MemObject):

icache_port = MasterPort("Instruction Port")

dcache_port = MasterPort("Data Port")

é

class BaseCache(MemObject):

cpu_side = SlavePort("Port on side closer to CPU")

mem_side = MasterPort("Port on side closer to MEM")

...

class Bus(MemObject):

slave = VectorSlavePort("vector port for connecting masters")

master = VectorMasterPort("vector port for connecting slaves")

é

system.cpu.icache_port = system.icache.cpu_side

system.cpu.dcache_port = system.dcache.cpu_side

system.icache.mem_side = system.l2bus.slave

system.dcache.mem_side = system.l2bus.slave
Memory

CPU

I$ D$

Bus

© ARM 2017 89

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Requests & Packets

ÁProtocol stack based on Requests and Packets

ÁUniform across all MemObjects(with the exception of Ruby)

ÁAimed at modelling general memory-mapped interconnects

ÁA master module, e.g. a CPU, changes the state of a slave module, e.g. a memory through a

Request transported between master ports and slave ports using Packets

if (req_pkt->needsResponse()) {

req_pkt->makeResponse();

} else {

delete req_pkt;

}

...

Request req(addr, size, flags, masterId);

Packet* req_pkt = new Packet(req, MemCmd::ReadReq);

...

...

delete resp_pkt;

CPU memory

© ARM 2017 90

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Requests & Packets

ÁRequests contain information persistent throughout a transaction

ÁVirtual/physical addresses, size

ÁMasterIDuniquely identifying the module initiating the request

ÁStats/debug info: PC, CPU, and thread ID

ÁRequests are transported as Packets

ÁCommand (ReadReq, WriteReq, ReadResp, etc.) (MemCmd)

ÁAddress/size (may differ from request, e.g., block aligned cache miss)

ÁPointer to request and pointer to data (if any)

ÁSource & destination port identifiers (relative to interconnect)

ÁUsed for routing responses back to the master

ÁAlways follow the same path

ÁSenderStateopaque pointer

ÁEnables adding arbitrary information along packet path

© ARM 2017 91

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Functional transport interface

ÁOn a master port we send a request packet using sendFunctional

Á This in turn calls recvFunctionalon the connected slave port

Á For a specific slave port we implement the desired functionality by overloading recvFunctional

Á Typically check internal (packet) buffers against request packet

Á For a slave module, turn the request into a response (without altering state)

Á For an interconnect module, forward the request through the appropriate master port using

sendFunctional

Á Potentially after performing snoops by issuing sendFunctionalSnoop

CPU memory

masterPort.sendFunctional(pkt);

// packet is now a response

MySlavePort::recvFunctional(PacketPtr pkt)

{

...

© ARM 2017 92

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Atomic transport interface

ÁOn a master port we send a request packet using sendAtomic

Á This in turn calls recvAtomicon the connected slave port

Á For a specific slave port we implement the desired functionality by overloading recvAtomic

Á For a slave module, perform any state updates and turn the request into a response

Á For an interconnect module, perform any state updates and forward the request through the

appropriate master port using sendAtomic

Á Potentially after performing snoops by issuing sendAtomicSnoop

Á Return an approximate latency

Tick latency = masterPort.sendAtomic(pkt);

// packet is now a response

MySlavePort::recvAtomic(PacketPtr pkt)

{

...

return latency;

}

CPU memory

© ARM 2017 93

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Timing transport interface

ÁOn a master port we try to send a request packet using sendTimingReq

Á This in turn calls recvTimingon the connected slave port

Á For a specific slave port we implement the desired functionality by overloading recvTimingReq

Á Perform state updates and potentially forward request packet

Á For a slave module, typically schedule an action to send a response at a later time

ÁA slave port can choose not to accept a request packet by returning false

Á The slave port later has to call sendRetryReqto alert the master port to try again

bool success = masterPort.sendTimingReq(pkt);

if (success) {

// request packet is sent

...

} else {

// failed, wait for recvReqRetry from slave port

...

}

MySlavePort::recvTimingReq(PacketPtr pkt)

{

assert(pkt->isRequest());

...

return true/false;

}

CPU memory

© ARM 2017 94

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Timing transport interface (contõd)

ÁResponses follow a symmetric pattern in the opposite direction

ÁOn a slave port we try to send a response packet using sendTiming

Á This in turn calls recvTimingon the connected master port

Á For a specific master port we implement the desired functionality by overloading recvTiming

Á Perform state updates and potentially forward response packet

Á For a master module, typically schedule a succeeding request

ÁA master port can choose not to accept a response packet by returning false

Á The master port later has to call sendRetryRespto alert the slave port to try again

bool success = slavePort.sendTimingResp(pkt);

if (success) {

// response packet is sent

...

} else { ...

MyMasterPort::recvTimingResp(PacketPtr pkt)

{

assert(pkt->isResponse());

...

return true/false;

}

CPU memory

© ARM 2017

CPU Models

Andreas Sandberg

© ARM 2017 97

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Å Some timing

Å Caches

Å No BPs

Å Fast

Å Some timing

Å Caches

Å Limited BPs

Å Fast

Å Full timing

Å Caches

Å Branch predictors

Å Slow

Å No timing

Å No caches

Å No BP

Å Reallyfast

CPU models overview

BaseCPU

BaseKvmCPU TraceCPUBaseSimpleCPU

AtomicSimpleCPU

TimingSimpleCPU

DerivO3CPU MinorCPU

X86KvmCPU

ArmV8KvmCPU

© ARM 2017 98

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Atomic Simple CPU

ÁOn every CPU tick() perform all

operations for an instruction

ÁMemory accesses use atomic

methods

ÁFastest functional simulation

ÁExcept for KVM-accelerated CPUs

© ARM 2017 99

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Timing Simple CPU

ÁMemory accesses use timing path

ÁCPU waits until memory access

returns

ÁFast, provides some level of timing

© ARM 2017 100

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Detailed CPU Models

ÁParameterizable pipeline models w/SMT support

ÁTwo Types

ÁMinorCPUðParameterizable in-order pipeline model

ÁO3CPU ðParameterizable out-of-order pipeline model

ÁòExecute in Executeó, detailed modeling

ÁRoughly an order-of-magnitude slower than Simple

ÁModels the timing for each pipeline stage

ÁForces both timing and execution of simulation to be accurate

Á Important for Coherence, I/O, Multiprocessor Studies, etc

© ARM 2017 101

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

In-Order CPU Model

ÁModels a òstandardó 4-stage pipeline

ÁFetch1, Fetch2, Decode, Execute

ÁKey Resources

ÁCache, Execution, BranchPredictor, etc.

ÁPipeline stages

© ARM 2017 102

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Out-of-Order (O3) CPU Model

ÁDefaults to a 7-stage pipeline

ÁFetch, Decode, Rename, Issue, Execute, Writeback, Commit

ÁModel varying amount of stages by changing the delay between them

Á For example: fetchToDecodeDelay

ÁKey Resources

ÁPhysical Registers, IQ, LSQ, ROB, Functional Units

© ARM 2017 103

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Important CPU interfaces

ÁBaseCPU

ÁBase class for all CPU models

ÁProvides a common interface for checkpointing/switching/interrupts/é

ÁEven used by KVM-based CPUs

ÁThreadContext

Á Interface for accessing total architectural state of a single thread (PC, registers, etc.)

ÁHolds pointers to important structures (TLB, CPU, etc.)

ÁCPU models typically implement custom versions or use SimpleThread

ÁExecContext

ÁAbstract interface defining how an instruction interface with the CPU model

© ARM 2017 105

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

StaticInst

ÁRepresents a decoded instruction

ÁHas classifications of the inst

ÁCorresponds to the binary machine inst

ÁOnly has static information

ÁHas all the methods needed to execute an instruction

ÁTells which regsare source and dest

ÁContains the execute() function

Á ISA parser generates execute() for all insts

© ARM 2017 106

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

DynInst

ÁComplex CPU models need to track resources used by instructions

ÁDynamic version of StaticInst

ÁUsed to hold extra information for in-flight instructions

ÁHolds PC, Results, Branch Prediction Status

Á Interface for TLB translations

ÁSpecialized versions for detailed CPU models

© ARM 2017 108

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Examples

ÁVirtualization-based CPU: BaseKvmCPU

ÁSee: src / cpu / kvm/base.{ cc,hh } and src/cpu/kvm/BaseKvmCPU.py

Á Implements the basic interfaces required by all CPU model

ÁReasonably small and well documented

ÁDoes notsimulate instructions or implement ExecContext

ÁSimplest possible simulated CPU: AtomicSimpleCPU

ÁSee: src / cpu /simple/{ base.cc,base.hh,atomic.cc,atomic.hh ,

AtomicSimpleCPU.py}

ÁMinimal simulated CPU that includes SMT

ÁSimplest òrealó model: MinorCPU

ÁSee src / cpu /minor/*

Á Implements a pipelined in-order CPU

© ARM 2017

Advanced Features &
Capabilities

© ARM 2017 110

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

ÁSwitching modes
Á (kvm+) functional + timing / detailed

ÁCheckpoints
Á boot Linux -> checkpoint

Á run multiple configurations in parallel

Á run multiple checkpoints in parallel

ÁMulti-threading
Ámultiple queues

Ámultiple workers execute events

Á data sharing and tight coupling limits speedup

ÁMulti-processed gem5
Á for design space explorations

Accelerating gem5

© ARM 2017 111

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Host #1

Distributed gem5 simulation
Host #1

simulated

system

#1

Host #2

Host #3

Packet

forwarding

Ágem5 running in parallel on a cluster of host machines

ÁPacket forwarding engine

ÁForward packets among the simulated systems

ÁSynchronize the distributed simulation

ÁSimulate network topology

ÁTested with ~30 nodes, 100s planned

gem5 process

host machine

simulated

system

#2

simulated

system

#3

© ARM 2017 112

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Object Diagram : Simulating a 2-node Cluster Example

simulated compute

node

TCPIface

SyncEvent SyncNode

simulated Ethernet switch

TCPIface

SyncEvent SyncSwitch

NSGigE

Root

EtherSwitch

TCPIface

Root

TCP socket

DistEtherLink DistEtherLink DistEtherLink

simulated compute

node

TCPIface

SyncEvent SyncNode

NSGigE

Root

DistEtherLink

TCP socket

© ARM 2017 113

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

ÁHigh-level OOO core model

speedy simulation

ÁCapture data dependencies and MLP

ÁElastic replay

ÁHigh-level synchronisation event

capture

ÁPredict scalability for SMPs

ÁAdditional 10x speedup

Elastic Traces ðfast, realistic memory exploration

0

2

4

6

0.8

0.9

1

1.1

E
rr

o
r

(%
)

R
e

la
tiv

e
 C

P
I (B) L2 size 1MB --> 2MB Mean error = 1.4%

5x-8x => ~1MIPS

© ARM 2017 114

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

ÁAddress rising cost of communication

ÁOptimize data structures to improve cache utilization and efficiency

ÁOptimize data storage onto heterogeneous memories

Data Profiling and Heterogeneous Memory

