Architectural Exploration with
gems

ARM Andreas Sandberg

Stephan Diestelhorst
William Wang

ARM Research

X1 GASRLOS 2017
201+04-09

©ARM 2017

This Is an Interactive presentation

Please ask questions:

ARM

Agenda

A Presenters: Andreas Sandberg, William Wang, Stephan Diestelhorst (ARM Cambridge,

UK)

A 13:00
A 13:10
A 13:25
A 13:50
A 14:10
A 14:30
A 15:00
A 15:40
A 16:00
A 16:45

©ARM 2017

Introduction (10 min)d Stephan

Getting Started (15 mind William
Configuration (25 minp Andreas

Debug & Trace (20 ming William
CreatingSimObjectq20 min)d Andreas
Coffee Break (30 min)

Memory System (40 mir Stephan
CPU Models (20 mind Andreas
Advanced Features (45 miaall
Contributing to gem5 (20 mind Andreas

ARM

©ARM 2017

Level of detall

A HW Virtualization
A Very no/limited timing
A The same Host/guest ISA
A Functional mode
A No timing, chain basic blocks of instruction
A Can add cache models for warming
A Timing mode
A Single time for execute and memory looku
A Advanced on bundle
A Detailed mode
A Full outof-order, inrorder CPU models
A Hit-undermissyeodering €&

7 ©ARM 2017 ARM

1

Users and contributors

A Widely used in academia and industryooo

A Contributions from
A ARM,AMD, Google
A Wisconsin, Cambridge, Michigan, BEC,

In a Nutshell, gem5...

... has had 11,558 commits made by 193 contributors
representing 386,321 lines of code

... is mostly written in C++
with a well-commented source code

... has a well established, mature codebase
maintained by a very large development team
with stable Y-O-Y commits

... took an estimated 104 years of effort (COCOMO model)
starting with its first commit in October, 2003

8 ending with its most recent commit 14 days ago

Publications with gem5

1200

800

600

400

200

0 T T T I
2011 2012 2013 2014 2015

Languages

| G+ 74% | Python 18%

I 13 Other 8%

Lines of Code

2004 2006 2008 2010 2012 2014 2016

Il Code M Comments Blanks

2016

ARM

1

9

When not to use gem5

A Performance validation
A gemb5 is not a cyclaccurate microarchitecture model!
A This typically requires more accurate models such as RTL simulation.
A Commercial products such a&RM CycleModels operate in this space.

A Core microarchitecture exploration

A Onlydo this if you have a custom, detailed, CPU model!

Agem50s core models were not designed
A To validate functional correctness or test bleedmgdge ISA improvements

A gemb> is not as rigorously tested as commercial products.
A New (ARMv8.0+) or optional instructions are sometimes not implemented
A Commercial products such a&RM FastModels offer better reliability in this space.

©ARM 2017

t

o)

rep

ARM

1

Why gem5?

A Runs real workloads
A Analyze workloads that customers use and care about 4%
Aé including complex wor k| o
A Comprehensive model library
A Memory and I/O devices
A Full OS,Web browsers
A Clients and servers Butnot a microarchitectural

A Rapidearlyprototyping model out of the box!
A New ideas can be tested quickly —
A Systemevel impact can be quantified
A Systemevel insights
A Enables us to study complex

Less)
......

memorysystem interactions A
A Can be wired to custom models S
A Add detail where it matters, when it matters! ans201>

10 ©ARM 2017 ARM

William Wang

©ARM 2017

1

13

Prerequisites

A Operating system:
A OSX, Linux
A Limited support for Windows 10 with a Linux environment
A Software:
A git
A Python 2.7 (dev packages)
A SCons
A gccd.8 or clang 3.1 (or newer)
A SWIG 2.0.4 or newer
A make
A Optional:
A dtc (to compile device trees)
A ARMvVS8 cross compilers (to compile workloads)
A pythonpydot (to generate system diagrams)

©ARM 2017

ARM

14

Compiling gem5

$ scons build/AIEl\/I/g%mS.op(|
1 1

A Guest architecture A Optimization level:
A Several architectures in the source A debug: Debug symbols, no/few
tree. optimizations

A Most common ones are: A opt: Debug symbols + most
' optimizations

A ARM o | A fast: No symbols + even more
A NULL 06 Used for tracedrive simulation optimizations

A X86 9 Popular in academia, buery
strange timindpehavior

©ARM 2017

ARM

15

Compi |l 1 ng gemb5O0s

1. sudo apt install device - tree - compiler

2. make T C system/arm/ dt
A Device trees are used to describe hamt-discover devices

Aarmv8 _gem5 vl Ncpu.dtb

A Traditional CMP/SMP configuration withcores
A Built from armv8.dts and platforms/vexpress_gem5 vl.dtsi

A armv8 _gemb5 vl big little M N.dtb
A bigLittleconfigurationsvith M bigcoresandN smallcores
A Built from armv8.dts and platforms/vexpress_gem5 vl.dtsi

©ARM 2017

devi

C

ARM

€

Compliling Linux for gem5

sudo apt install gcc -aarch64 -linux -gnu

git clone - b gem5/v4.4 https://github.com/gem5/linux - arm- gemb5
cd linux -arm-gem5

make ARCH=arm64 CROSS_COMPILE=aarch64- linux -gnu- gemb5_defconfig
make ARCH=arm64 CROSS COMPILE=aarch64- linux -gnu- -j nproc

o & w0 D BE

A Builds the default kernel configuration for gem5
A Has support for most of the devices that gem5 supports

16 ©ARM 2017 ARM

https://github.com/gem5/linux-arm-gem5

17

Example disk images

A Example kernels and disk images can be downloaded from gem5.org/Download
A This includes preompiled boot loaders
A Old but useful to get started

A Download and extract this into a new directory:

A wget http://www.gemb5.org/dist/current/arm/aarch - system - 2014 - 10.tar.xz
A mkdir dist ;cd dist
A tar xvf ../aarch - system - 2014 - 10.tar.xz

A Set the M5_PATH variable to point to this directory:
A export M5 PATH=/path/to/dist

A Most example scripts try to find files usiMp PATH

A Kernels/boot loaders/device trees #{M5_PATH}/binaries
A Disk images i${M5_PATH}/disks

©ARM 2017 ARM

http://www.gem5.org/dist/current/arm/aarch-system-2014-10.tar.xz

1

D

Running an example script

$ build/ARM/gem5.opt configs/example/arm/fs_bigLITTLE.py
--kernel path/toymlinux\
--CpUtype atomic\
--dth $PWD/system/arndt/armv8 _gem5 v1 big little 1 1.dib
--diskyour_disk Iimage.img

A Simulates alL system with 1+1 cores
AUses a functional O6atomicd CPU model
AUse the O0timingo O8U+InOceigurltionr an exampl e

18 ©ARM 2017 ARM

Demo

19 ©ARM 2017 ARM

Andreas Sandberg

©ARM 2017

Design philosophy

A gemb5 is conceptually a Python library implemented in C++
A Configured by instantiating Python classes with matching C++ classes
A Model parameters exposed as attributes in Python
A Running is controlled from Python, but implemented in C++

A Configuration and running are two distinct steps
A Configuration phase ends with a call to instantiate the C++ world
A Parameters cannot be changed after the C++ world has been created

21 ©ARM 2017 ARM

22

Useful tricks

A gemb5 can be launched interactively
A Use the-i option
A Pretty prompt ifipythonhas been installed
A Still requires a simulation script

A lghoreconfigs/example/{ fs,se }. py andconfigs/common/FSConfig.py
A Far too complex
A Tries to handle every single use case in a single configuration file

A Good configuration examples:
A configs/learning_gem5/
A configs/example/arm/

©ARM 2017

ARM

Control flow

Python m5.instantiate() m5.simulate() m5.simulate()

Create Python

: Instantiate objects Run simulation Run simulation EEEZ
objects

C++

Exit event
Exit event

v

Instantiate C++
objects

allback
allback

Simulated system

O O
v v
Running guest Running guest
code code

23 ©ARM 2017 ARM

General structure

A The simulator contains exactly one Root object

A Controls global configuration options
A root = Root(full_ system =True)

A The root object contains one or more System instances
A A system represents a shared memory machine
A Contains devices, CPUs, and memories

A Multiple system may be connected using network interfaces
A Cluster on cluster simulation
A Not within the scope of this presentation

24 ©ARM 2017 ARM

System Overview

25 ©ARMZ2017 ARM

A The system contains basic platform devices
A Interrupt controllers, PCI bridge, debug UART
A Sets up the boot loader and kernel as well

A See examples in config/example/arm:
A SimpleSystem (devices.py) defines a basic ARM system with PCI support
A Instantiated byreateSystem () infs_bigLITTLE.py

26 ©ARM 2017 ARM

D

Overriding model parameters

Import m5

(class L1DCache(m5.objects.Cache):
assoc = 2

size = '16kB’
\

-
class L1ICache(L1DCache):

assoc =16
_

p
11i = L1ICache(assoc=8,
repl=m5.objects.RandomRepl())

.

" AUs e gem56s base
A Override associativity
A Override size

——

A Use defaults from L1DCache
A Override associativity again

—

A Override parameters at
Instantiation time

27 ©ARM 2017

__ AWe bl |l cover meme
ARM

- Running

" [m5.instantiate()]{ A Instantiate the C++ world
[event = m5.simulate()]-< A Start the simulation
AN . . ' N — R Pri _ _
print 'Exiting @ tick % i :%s' \ Print why the simulator exited
% (m5.curTick(), —J A Sometimes desirable to call
. event.geiCause ()) mb5.simulate() again.
’ Y [ARun for a fixed number of
—

m5.simulate(m5.tick.fromSeconds(0.1)) simulated seconds

\, J —

28 ©ARM 2017 ARM

Creating Checkpoints

m5.checkpoint(' name.cpt ')

ACheckpoints can be used to store the
A Can be used to implemer@imPoint®r similar methodologies

A Checkpoint limitations:

A The act of taking a checkpoint affects system state!

ACheckpoints donot store cache state
ACheckpoints donot store pipeline state

©ARM 2017 ARM

29

Restoring Checkpoints

. . , — A Instantiate system and load
mb5.instantiate(name.cpt ') — .
state from checkpoint
[event = mb5.simulate()] — A Run in the same way as before

30 ©ARM 2017 ARM

') g

Guest to simulation script communication

[system.exit_on_work_items = True { A Work item handling in Python
e

- m——m— A Exit event will contain
[even = mS.simulate()] information about work items

]{ A Include the m5op header

[#lnclude "m50p.h” A Remember to link with libm5.a

- TP

m5_W_0rk_b?9'”('d’ 0); A Annotate your regions of
// Region of interest — interest

m5_work _end(id, 0);

G J

31 ©ARM 2017 ARM

Exit Events

event.getCause () event.getCode ()

user interrupt received - User pressedCtrl+C

simulate() limit reached - gemb5 reached the specified
time limit

m5_exit instruction Exit code from guest Guest executed m5_exit()

encountered

m5_fall instruction Failure code from guest Guest executed m5_fail()

encountered

checkpoint - Guest executed
m5_checkpoint()

workbegiriworkend Work item ID Guest work item annotation

32 ©ARM 2017 ARM

33

Dumping statistics

A Can be requested from Python:
A mb5.stats.dump(): Dump statistics
A mb.stats.reset() : Reset stat counters

A Guest command line:
A m5 dumpstats [[delay] [period]]
A m5 dumpresetstas [[delay] [period]]

A Guest code using libm5.a:
A m5_dump_stats(delay, periodicity):
A m5_dumpreset_stats(delay, periodicity):

©ARM 2017

Dump statistics
Dump & reset statistics

ARM

34

Examples

A Simple full system configuration file: ARM.LITTLEonfiguration example
A configs/example/arm/{fs_bigLittle.py, devices.py}
A Demonstrates how to setup a single system
A Reasonably small and well documented

A Distributed multtsystem configuration:
A configs/example/arm/dist_bigLittle.py
A Reuses the configuration file above

A Simplesyscalemulation mode example:Jason Lel® wer 0s Lear ni
A configs/learning_gemb5/partl

©ARM 2017 ARM

n ¢

William Wang

©ARM 2017

36

Debugging Facilities

A Tracing
A Instruction tracing
A Diffing traces

A Usinggdbto debug gem5
A Debugging C++ anddb-callable functions
A Remote debugging

A Pipeline viewer

©ARM 2017

ARM

Tracing/Debugging

A printf () is a nice debugging tool
A Keep good print statements in code and selectively enable them
A Lots of debug output can be a very good thing when a problem arises
A UseDPRINTFs in code
A DPRINTH , "Inserting entry into TLB with pfn : %# x é)

A Example flags:
A Fetch, Decode, Ethernet, Exec, TLB, DMA, Bus, Cache, O3CPUAII
A Print out all flags with ./build/ARM/gem5.opt -- debug - help

A Enabled on the command line
A -- debug - flags=Exec
A -- debug - start=30000
A -- debug- file= my_trace.out
A Enable the flag Exec; Start at tRBO0O0 ;Write to my_trace.out

37 ©ARM 2017 ARM

Sample Run with Debugging

Command Line;:

22:44:28 [/work/gem5] ./build/ARM/gemb5. opt -- debug - flags=Decode --
debug - start=" 50000 -- debug - file= my_trace.out configs /example/ se.py -C
tests/test - progs /hello/bin/arm/ linux /hello

é

ek REAL SIMULATION ****

info: Entering event queue @ 0. Starting simulation...
Hello world!

Exiting @ tick 3107500 because target called exit()

my_trace.out
2:44:47 [/ work /gem5] head mb5out/ my_trace.out

50000: system.cpu : Decode: Decoded cmps instruction : 0xe353001e
50500: system.cpu : Decode: Decoded Idr instruction . 0x979ff103
51000: system.cpu : Decode: Decoded Idr instruction . 0xe5107004
51500: system.cpu : Decode: Decoded Idr instruction : 0xe4903008
52000: system.cpu : Decode: Decoded addi_uop instruction . 0xe4903008
52500: system.cpu : Decode: Decoded cmps instruction : 0xe3530000
53000: system.cpu : Decode: Decoded b instruction ; Ox1affff84
53500: system.cpu : Decode: Decoded sub instruction . 0xe2433003
54000: system.cpu : Decode: Decoded cmps instruction : 0xe353001e
54500: system.cpu : Decode: Decoded Idr instruction . 0x979ff103

38 ©ARM 2017 ARM

39

Adding Your Own Flag

A Print statements put in source code
A Encourage you to add ones to your models or contribute ones you find particularly useful

A Macros remove them from thgem5.fast binary

A There is no performance penalty for adding them
A To enable them you need to rugem5.opt or gem5.debug

A Adding one with an existing flag
ADPRI NTF(<fl ag>,prinff n o%3mal, Aar gument so) ;

A To add a new flag add the following in a Sconscript
A DebugFlag (dMyNewFlag6)
Alnclude corresponding header, eMyNewFldgghma | ude

ndeb

©ARM 2017 ARM

1

40

Instruction Tracing

A Separate from the general debug/trace facility
A But both are enabled the same way

A PeFrinstruction records populated as instruction executes
A Start with PC and mnemonic
A Add argument and result values as they become known

A Printed to trace when instruction completes
A Flags for printing cycle, symbolic addresses, etc.

2:44:47 [/
50000 :
50500:
51000:
51500:
52000:
52500:
53000:

©ARM 2017

0x14468
0Ox1446c
0x14640
0x14644
0x14644
0x14648
0x1464c

.0
i

cmps

work /gem5] head mb5out/ my_trace.out
TO:
TO:
TO:
TO:
TO:
TO:
TO:

r3, #30
ldrls pc, [pc, r3 LSL #2]
ldr r7, [rO, # - 4]
ldr r3, [rO] #8
addi_uop ro, r0, #8
cmps r3, #0
bne

: IntAlu : D=0x00000000

: MemRead: D=0x00014640 A=0x14480
. MemRead: D=0x00001000 A=0xbeffffOc
: MemRead: D=0x00000011 A=0xbeffff10
. IntAlu . D=0xbeffff18
. IntAlu : D=0x00000001
. IntAlu

ARM

Using GDB with gem5

A Several gemb5 functions are designed to be called from GDB
A schedBreakCycle () 0 also with-- debug - break
A setDebugFlag ()/ clearDebugFlag ()
A dumpDebugStatus ()
A eventgDump ()
A SimObject ::find()
A takeCheckpoint ()

41 ©ARM 2017 ARM

1

42

Using GDB with gem5

©ARM 2017

2:44:47 [/work/gem5] gdb -- args ./build/ARM/gem5.opt
configs /example/ fs.py
GNUgdb Fedora (6.8 - 37.el5)

(-gdb) b main

Breakpoint 1 at 0x4090b0: file build/ARM/ sim / main.cc , line 40.
(gdb) run

Breakpoint 1, main (argc =2, argv =0x7fffa59725f8) at

build/ARM/ sim / main.cc
main(int argc , char ** argv)

(gdb) call schedBreakCycle (1000000)
(gdb) continue
Continuing.

gem5 Simulator System

0: system.remote_gdb.listener . listening for remote gdb #0on
port 7000

*** REAL SIMULATION ****

info: Entering event queue @ 0. Starting simulation...

Program received signal SIGTRAP, Trace/breakpoint trap

0x0000003cch6306f7 in kill () from /lib64/libc.s0.6

ARM

1

43

Using GDB with gem5

(gdb) p __ curTick
$1 = 1000000

(gdb) call setDebugFlag ("Exec")
(gdb) call schedBreakCycle (1001000)
(gdb) continue

Continuing.

1000000:

system.cpu TO: @ stext+148.1 : addi_uop

: D=0x00004c30

1000500:

system.cpu TO: @ stext+152 : tegs 10, r6:

D=0x00000000

Program

received signal SIGTRAP, Trace/breakpoint trap.

(gatyORRRPO3SRASRAT n il from Ligaling 0.6
$2 =(SimObject *)0x19cbal30

(gdb) print(BaseCPU) SimObject ::find(" system.cpu
$3 =(BaseCPU *) 0x19cbhal30

(gdb) p $3 - >instCnt

$4 = 431

©ARM 2017

)

rO, rO, #4 :

IntAlu

IntAlu

ARM

Diffing Traces

A Often useful to compare traces from two simulations
A Find where known good and modified simulators diverge

A Standard diff only works on files (not pipes)

Aébut you really dondt want to run the simulat:i

A util /[rundiff
A Perl script for diffing two pipes on the fly

A util [tracediff
A Handy wrapper for usingundiffto compare gem5 outputs
A tracediff Ra/ gemb. opt | b/ Jgdemk - flagstErec
A Compares instructions traces from two builds of gem5
A See comments for details

ARM

44 ©ARM 2017

45

Advanced Trace Diffing

ASometi mes I f you run |1 nt o a-to-applesttrgcesb ug I

A Different cycles counts, different code paths from interrupts/timers

A Some mechanisms that can help:
A - ExecTicks dondt print out ticks
A - ExecKernel dondt print out kernel code
A -ExecUser dono6t print out user code
A ExecAsid print out ASID of currently running process

A State trace

A PTRACE program that runs binary on real system and compares-bycy¢cle to gem5
A Supports ARM, x86, SPARC
A See wiki for more information [http://gem5.ofgAce Based Debugging

©ARM 2017

ARM

Checker CPU

A Runs a complex CPU model such as the O3 model in tandem with a special
Atomic CPU model

A Checker reexecutes and compares architectural state for each instruction
executed by complex model at commit

A Used to help determine where a complex model begins executing instructions
Incorrectly in complex code

A Checker cannot be used to debug MP or SMT systems

A Checker cannot verify proper handling of interrupts
ACertain instructions mwfigt be mar ked u

46 ©ARM 2017 ARM

1

a7

Remote Debugging

/build/ARM/gem5.opt configs /example/ fs.py
gem5 Simulator System

command line: ./build/ARM/gem5.opt

configs /example/ fs.py

Global frequency set at 1000000000000 ticks per second

info: kernel located at: / dist /binaries/ vmlinux.arm

Listening for system connection on port 5900

Listening for system connection on port 3456

0: system.remote_ gdb.listener . listening for remote gdb #0 on

port 7000
simulation...

©ARM 2017

info: Entering event queue @ 0. Starting

ARM

Remote Debugging

GNUgdb (Sourcery G++ Lite 2010.09 - 50) 7.2.50.20100908 - CVS

Copyright (C) 2010 Free Software Foundation, Inc.

(gdb) symbol - file/ dist /binaries/ vmlinux.arm

Reading symbols from / dist /binaries/ vmlinux.arm ...done.

(gdb) setremoteZ - packeton)
(gdb) set tdesc filenamearm - with - ne}un.Axﬁn'T/'V roonly, ARMvE doesnot nee;
(gdb) target remote 127.0.0.1:7000

Remote debugging using 127.0.0.1:7000

cache_init_objs (cachep =0xc7c00240, flags=3351249472) at

mm/slab.c:2658

(gdb) step

sighand_ ctor (data=0xc7ead060) at kernel/fork.c:1467

(gdb) info registers

rO Oxc7ead060 - 940912544
rl 0x5201312
r2 0xc002fled - 1073548828
r3 0Oxc7ead060 - 940912544
r4 0x00
R r,5 Oxc7ead020 940912608 ARM

e

50

O3 Pipeline Viewer

Use -- debug - flags=0O3PipeView andutil

/03 - pipeview.py

Thanks for flying Vim — less — 162 x44

ceana -
P B

P

©ARM 2017

ldq +1
brz 1

ARM

Andreas Sandberg

©ARM 2017

Describes parameters and

exported methods

Python
description

How are models implemented

Generates
Python

wrappers

Parameter
structs

Implements your model

52 ©ARM 2017

Includes

ARM

How are models instantiated

obj = MyOby) mb5.instantiate()

Python
wrappers

Python object

Instantiate and populate
MyObjParams

Parameter
C++ model

struct

MyObjParamscreate()

53 ©ARM 2017 ARM

- Discrete event based simulation

Schedule

I
)

Ml MyODbj:startup() Event handler

e

Time

Event handler i Ll Ll b

A Discrete: Handles time in discrete steps
A Each step is a tick
A Usually 1THz in gem5

A Simulator skips to the next event on the timeline

54 ©ARM 2017 ARM

Creating aSimODbject

A Derive Python class from Pythd&imObiject

A Define parameters, ports and configuration
A Parameters in Python are automatically turned into Gstruct and passed to C++ object

A Add Python file toSConscript
A Or, place it in an existing Python file

A Derive C++ class from C+4&imObject
A Defines the simulation behavior
A Seesrc / sim/ sim_object .{ cc,hh }
A Add C++ filename td&SConscript in directory of new object
A Need to make sure you have a create factory method for the object
A Look at the bottom of an existing object for info

A Recompile

55 ©ARM 2017 ARM

- SiImODbjectinitialization

Instantiation Register stats
A Uses a factory method: A MyObijectregStat§)

MyObjectParamscreate()

Start model
A MyObiject:startup()

56 ©ARM 2017

Initialize architectural
State

A MyObijectinitState)

Reset stats
A MyObijectresetStatf)

ARM

€

Parameters an&imODbjects

A Parameters td5imObjectsare synthesized from Python structures
A Object hierarchy in Python reflects the C++ world

A This example is from src/dev/arm/Realview.py

Python class nam\ o Python base class

class PI011(Uart):
C++ clasS==——) type = 'PI011'
__— cxx_header ="dev/arm/pl011.hh"
C++ header gic = Param.Gic (Parentany ," Gic to use for interrupting”)
int_num = Param.UInt32("Interrupt number that connects to GIC")

éu

end on_ eot = Param.Bool (Fal s e, "End the simulation when
int_delay = Param.Latency (" 100ns ", "Ti me between action é"
Parameter name Parameter type ‘ Parameter Description

Default value

57 ©ARM 2017

ARM

)

SimObjectParameters

A Parameters can be:
A Scalar®) Param.Unsign€fl),Param.Float5 . 0) , Param. Ul nt 32(42), &
A Arraysd VectorParam.Unsign€d,1,2,3])
A SimObject® Param.PhysicalMemdrye)
A Arrays of SimObject VectorParam.PhysicalMem@Parent.any
A Memory address rangé$aramAddrRang@,Addr.max))
A Normally converted from strings with units :
A Latencyd Param.Laten§i 5 ns 0) Ti cKk
A Frequencyd Param.Frequentyd 1 0 O-MHck O)
A MemorySizeéd Param.MemorySited 1 GHjtgs
A Timed Param.Timg 6 Mon Mar 25 09:00: 00 CST 201206)
A Ethernet Addres® Param.EthernetAddro 9 0: 00: AC: 42 : 45: 000)

58 ©ARM 2017 ARM

1

59

Auto-generated Header file

©ARM 2017

#ifndef _ PARAMS__ Pl011
#define _ PARAMS__ PI011

class PI011;

#include < cstddef >
#include "base/ types.hh ©
#include" params/ Gic.hh "
##include "base/ types.hh

#include " params/ Uart.hh " Factory method

struct Pl0O11Params

. public UartParams
{ class PI0O11(Uart):
PI011 * create(); type = 'PI011'
w_nt32_t | Int_num ; >< gic = Param.Gic (Parentany , ¢é)
Gic * gic ; int num = Param. Ul nt 32(é)
bool end_on_eot ; < end_on_eot = Param.Bool (Fal se, " E n d é)
Tick int_delay ; < int delay = Param.Latency (" 100ns", Ti m

3
#endif // __PARAMS_ PIO11

ARM

How Parameters are used in C++

srd/devarm/plO11.cc:

PI011::PlI011(const PI0O11Params *p)
. Uart (p), é,
INtNum (p- >int_num), gic (p->gic),
endOnEOT p- >end_on_eot), intDelay (p->int_delay)

—~ D\

You can also access parameters thropghams) accessomfter instantiation.

60 ©ARM 2017 ARM

1

61

Creating/Using Events

A One of the most common things in an event driven simulator is

scheduling events
A Declaring events and handlers is easy:

/* Handle when a timer event occurs */

void timerHappened ();
EventWrapper <MyClass , & MyClass :: timerHappend > event;

A Scheduling them is easy too:

[* something that requires me to schedule an event at time t*/
if (event.scheduled 0)
reschedule(event, curTick () +1);

else
schedule(event, curTick () +1);

©ARM 2017

ARM

CheckpointingSimODbjectState

A If your object has state, that needs to be written to the checkpoint

A Checkpointing takes place ondaainedsimulator
A Draining ensures that microarchitectural state is flushed
A Models may need to flush pipelines and wait for outstanding requests to finish.

A Checkpoint implemented by overriding
SimObject ::serialize(CheckpointOut &)

A Save necessary state
A No need to store parameters from the confgystyenh
A UseSERIALIZE_*() macros orparamOut

A To implement restore, override
SimObject :. unserialize (Checkpointin &)

A UseUNSERIALIZE *() macros orparamin

62 ©ARM 2017 ARM

- Creating a checkpoint

Trigger checkpointing Drain the simulator Serialize objects

AScript call: AEnsures a welllefined AMyObiject:serialize(
m5. checkmyxpta) architectural state CheckpointOut)

AFlushes CPU pipelines
AWrites back caches

Resume drained object: Resume simulation

AMyObjectdrainResum@ AScript call:
mb5.simulate()

63 ©ARM 2017 ARM

64

Restoring from a checkpoint

Instantiation

AUses a factory method:
MyObjectParamscreate()

Resume system
AMyObiject ::drainResume ()

©ARM 2017

Register stats
AMyObject regStat§)

Start model
AMyObject:startup()

Restore architectural
state

AMyObiject ::unserialize (
Checkpointin &)

Reset stats
AMyObject resetStat§)

ARM

Draining

Script requests draining

———

A Flush internal state
A Stop producing new ~— Call SimObjectdrain()
messages

All objects
drained

Simulate until
signalDrainDon@

65 ©ARM 2017 ARM

66

Checkpointing Example

/[uint16_t control;
void
Pl011::serializ€nheckpointOut&cp) const

{
SERIALIZE _SCALAR(control);

}

void
Pl011unserializéCheckpointin&cp)

{
UNSERIALIZE _SCALAR(control);

}

©ARM 2017

ARM

67

Good Examples

A Simple 10 devicessaFake
A Seesrc /dev/ isa fake .{ cc,hh } andsrc/dev/Device.py
A Demonstrates a basic memeoerngapped device using thiBasicPioDevice base class

A PCI device®ciVirtlO
A Seesrc /dev/ virtio /pci .{ cc,hh } andsrc/dev/VirtlO.py
A PCI device with a single BAR and interrupts
A More complex PCI devic€opyEngine
A Seesrc /dev/ pci / copy _engine .{ cc,hh } andsrc/dev/pci/CopyEngine.py
A PCI device with DMA support
A Python exportsPowerModelState

A Seesrc/sim/power/PowerModelState.py
A Exports two methods getDynamicPower & getStaticPower) to Python

©ARM 2017

ARM

<|nsert coffee break here>

ARM

Stephan Diestelhorst

©ARM 2017

- Goals

e A Model a system witlmeterogeneouspplications, running on a set of
e heterogeneouprocessing engines, usingterogeneousnemories and
Interconnect

A CPU centric: capture memory system behaviour accurate enough
A Memory centric: Investigate memory subsystem and interconnect architectures

ARM

70 ©ARM 2017

Goals, contd.

A Two worlds...
A Computatiorrcentric simulation
A e.gSimpleScalgsimetc
A More behaviourally oriented, with aaoc ways of describing parallel behaviours and
Intercommunication

A Communicationcentric simulation
A e.g. SystemC+TLM2 (IEEE standard)
A More structurally oriented, with parallelism and interoperability as a key component
A gemb5 is trying to balance
A Easy to extend (flexible)
A Easy to understand (well defined)
A Fast enough (to run fulystem simulation at MIPS)
A Accurate enough (to draw the right conclusions)

71 ©ARM 2017 ARM

1

Event Simulation

A Eventdriven
A Nno activity-> no clocking
A event queue

A Deterministic
A fixed random number seed
A no dependence on host addresses

A Multi-Queue
A multiple workers

72 ©ARM 2017

/| event queue\

time

ARM

1

73

Ports, Masters and Slaves

A MemObijectsare connected through master and slave ports

A A master module has at least one master port, a slave module at least one slave
port, and an interconnect module at least one of each
A A master port always connects to a slave port
A Similar to TLM2 notation

Master Interconnect Slave

module \\ / / module / module

Master port — Slave port —
©ARM 2017 p p ARM

74

Transport interfaces

A Atomic
A Similar to loosely timed in TLM
A Blocking: Requests completes in a single call chain
A Each component along the way adds latency to the request The Atomic and Timing

interfaces are mutually
exclusive

A Timing
A Similar to approximately timed in TLM
A Asynchronous: One call to send a paclatllbackvhen response is ready.

A Functional
ADebug i nterface that doesndot affect coheren
A Blocking: Requests complete within a single call chain.

©ARM 2017 ARM

1

75

Communication Monitor

A Insert as a structural component where stats are desired

memmonitor = CommMonitor()
membus.master = memmonitor.slave
memmonitor.master = memctrl.slave

A A wide range of communication stats
A bandwidth, latency, intdransaction (read/write) time, outstanding transactions, address

heatmapetc
A Provides an attachment point for communication probes:
A Tracing (usingrotobuf) Latency distribution

A Stack distance monitoring
A Footprint estimation

Distribution (%)
PNWSOIO N
ololoNolololoNe

RS AR ALY
q\ \Qb& \\‘b \q)\ ARM

©ARM 2017
Latency (ns)

76

Traffic generator

A Test scenarios for memory system regression and performance validation

A Highlevel of control for scenario creation

A Blackbox models for components that are not yet modeled

A Video/baseband/accelerator for memesystem loading

A Inject requests based on (probabilistic) stat@nsition diagrams
A ldle, random, linear and trace replay states

©ARM 2017

linear

dle

linear

dle

linear

STime

ARM

Memory controllers

A All memories in the system inherit frombstractMemory

A Basic singlehannel memory controller
A Instantiate multiple times if required
A Interleaving support added in the bus/crossbar (to be posted)

A SimpleMemory
A Fixed latency (possibly with a variance)
A Fixed throughput (request throttling without buffering)
A SimpleDRAM
A Highlevel configurable DRAM controller model to minid®Rx, LPDDRxWidelO, HBMetc
A Memory organization: ranks, banks, rwffer size
A Controller architecture: Read/write buffers, open/close page, mapping, scheduling policy
A Key timing constraint$RCD, tCL,tRRtBURSTIRFC tREFItTAW /tFAW

ARM

77 ©ARM 2017

Top-down controller model

ADonot model the actual DRAM, only the
A DDR3/4,LPDDR2/3/4,W101/2, GDDR5, HBM, HMC, even PCM
A SeesrémenDRAMCIrl.pgndsrémenidram_ctr{hh cc}

Device width
Burst length
#ranks, #banks
Page size

DRAM Memory Controller

write queue

read queue

tRCD

tCL

tRP

tRAS
tBURST
tRFC& tRFEI
tWTR

tRRD
tFAW/TAW

e

Hansson et aGimulating DRAM controllers for future system architecture expBmat® S o 1 4
78 ©ARM 2017 ARM

0p)
<
%
—t
®
3
=
—t
®
=
)
0
D
7

T T
8 T
2 <
— R0
(@] =
=3 =}
< >
Qo (@]

(@)
Q o
O >
= (%))
= =
=4)
(@) o
S 7}

1

e

Controller model correlation

A Comparing with a real memory controller

A Synthetic traffic sweeping bytes per activate and number of banks
A Seeconfigslramséweep.pgndutifdram_sweep_plot.py

gem5 model

m 80-100
m 60-80
m 40-60
m 20-40
m(0-20

64 Bytes per

79 ©ARM?2017 Activate

Real memory controller

100 — LSS
80 T‘"
60 - = 80-100
40+ T m60-80
20 +— 40-60
| m20-40
0 =
. m0-20
5 ~ / 256
/ 192
Number of Banks 2 128 Bytes per
s Activate

- DRAM power modeling

B e
Qg&’
e A DRAM accounts for a large portion of system power DRAMPower
€ A Need to capture power states, and system impact

A Integrated model opens up for developing more clever strategies
A DRAMPoweradapted and adopted for gem5 usase

Energy Saving due to Power -Down (%) BBench DRAM Energy Analysis (LPDDR3 x32)

GPU-AngryBirds
A Active Energy

A Precharge Energy m Static Energy(mJ)

bbench m Energy Saving due to

Power-Down (%) A Read/Write Energy

A Refresh Energy

® Dynamic Energy(mJ)

0 5 1015202530354045505560657075808590

80 ©ARM 2017 Naji et al,A HigH_evel DRAM Timing, Power and Area Explorat®ATd@®,S 6 1 5 ARM

Address interleaving

A Multi-channel memory support is essential

A Emerging DRAM standards are mugltiannel by nature
(LPDDR4,WI01/2,HBM1/2, HMC)

A Interleaving support added to address range
A Understood by memory controller and interconnect

A Seesre¢baseaddr_range.Hior matching and
srémenixbar{hh cc}for actual usage

A Interleaving not visible in checkpoints

A XOR-based hashing to avoid imbalances
A Simple yet effective, and widely published
A SeeconfiggommoremConfig.@gr system configuration

81 ©ARM 2017

¥ |2UUey)

AN

—

X8
DQ

CH-A
CA

x8
DQ

—— 8 Banks per Channel —,

2 Independent Channels ——»

2KB Page
«—>

X8
DQ

CH-B
CA

Vs

g [puuey)

X8
DQ

Source: Micron

ARM

1

82

Crossbarsé&Bridges

A Create rich system interconnect topologies using
a simple bus model and bus bridge

A Crossbars do address decoding and arbitration
A Distributes snoops and aggregates snoop responses

A Routes responses
A Configurable width and clock speed

A Bridges connects two buses
A Queues requests and forwards them

A Configurable amount of queuing space for requests and

responses
XBar

©ARM 2017

Bridge

ARM

Caches

A Single cache model with several components:
A Cache: request processing, miss handling, coherence
A Tags: data storage and replacement (LRU, Random, etc.) Cache
A PrefetcherN-Block Ahead, TaggdeérefetchingStride

Prefetching
A MSHR &MSHRQueusetrack pending/outstanding

requests
A Also used for write buffer

A Parameters: size, hit latency, block sassociativity =
number of MSHRs (max outstanding requests)

83 ©ARM 2017 ARM

Coherence protocol

A MOESI budased snooping protocol
A Support nearly arbitrary muHevel hierarchies at the expense of some realism

A Does not enforce inclusion

AMagi c oOexpress snoopsodO propagate upwa
A Avoid complex race conditions when snoops get delayed
A Timing is similar to some realorld configurations

A L2 keeps copies of all L1 tags
A L2 and L1s snooped in parallel

ARM

84 ©ARM 2017

1

Snoop (probe) filtering

A Broadcastbased coherence protocol
A Incurs performance and power cost
A Does not reflect realistic implementations

A Snoop filter goes one step towards directories
A Track sharers, based osmritebackand clean eviction
A Direct snoops and benefit from locality

A Many possible implementations
A Currently ideal (infinite), no back invalidations
A Can be used with coherent crossbars on any level

A SeesrémeniSnoopFilter.pnd
srémenisnoop_filtehh cc}*

85 ©ARM 2017

"Old” broadcast protocol

Home
Node | Probe:

o I I\— /

ReqQ | o
Node

PF - clean data

Req
Node

PF - dirty data

Home
Node

’ ~ Directed
! \‘\ roos

Req Py
Node | .. .

Source: AMD

ARM

Memory system verification

A Check adherence to consistency model
A Notion of functional reference memory is too simplistic
A Need to track valid values according to consistency
model
A Memory checker and monitors

A Tracking insrémeniMemChecker.jaynd
srémenimem_checkégnh cc}

A Probing insréememmem_checker_monHoin cc}

A Revamped testing

A Complex cache (tree) hierarchies aonfigexamplesiiemtesimemchedipy
A Randomly generated soak testuh/memtessoak.py
A For any changes to the memory system, please use these

MemChecker Gamd Monitor Monitor Monitor

86 ©ARM 2017 ARM

87

Ruby for Networks and Coherence

A As an alternative to its native memory system gemb5 also integrates Ruby

A Create networked interconnects based on domaipecific language (SLICC) for
coherence protocols

A Detalled statistics
A e.g., Request size/type distribution, state transition frequencies, etc...
A Detailed component simulation
A Network (fixed/flexible pipeline and simple) _
A Caches (Pluggable replacement policies) |
A Supports Alpha and x86

A Limited ARM support about to be added X
A Limited support for functional accesses

©ARM 2017 ARM

1

88

Instantiating and Connecting Objects

class BaseCPU(MemObiject):
icache_port = MasterPort("Instruction Port")
dcache_port = MasterPort("Data Port")
é

class BaseCache(MemObject):
cpu_side = SlavePort("Port on side closer to CPU")
mem_side = MasterPort("Port on side closer to MEM")

class Bus(MemObiject):
slave = VectorSlavePort("vector port for connecting masters")
master = VectorMasterPort("vector port for connecting slaves")
é

system.cpu.icache_port = system.icache.cpu_side

system.cpu.dcache_port = system.dcache.cpu_side

system.icache.mem_side = system.|2bus.slave
system.dcache.mem_side = system.|2bus.slave

©ARM 2017

ARM

1

89

Requests & Packets

A Protocol stack based on Requests and Packets
A Uniform across alMemObjects(with the exception of Ruby)
A Aimed at modelling general memenyapped interconnects

A A master module, e.g. a CPU, changes the state of a slave module, e.g. a memory through a
Request transported between master ports and slave ports using Packets

Request req(addr, size, flags, masterid);
Packet* req_pkt = new Packet(req, MemCmd::ReadReq);

>

if (req_pkt->needsResponse()) {
req_pkt->makeResponse();

} else {
delete req_pkt;

}

P
~

delete resp_pkt;

©ARM 2017 ARM

Requests & Packets

A Requestgontain information persistent throughout a transaction
A Virtual/physical addresses, size
A MasterIDuniquely identifying the module initiating the request
A Stats/debug info: PC, CPU, and thread ID

A Requests are transported as Packets
A Command ReadReyVriteReqg, ReadResetc.) MemCmd
A Address/size (may differ from request, e.g., block aligned cache miss)
A Pointer to request and pointer to data (if any)
A Source & destination port identifiers (relative to interconnect)
A Used for routing responses back to the master
A Always follow the same path
A SenderStatepaque pointer
A Enables adding arbitrary information along packet path

90 ©ARM 2017

ARM

1

91

Functional transport interface

A On a master port we send a request packet ussegdFunctional

A This in turn callsecvFunctionabn the connected slave port

A For a specific slave port we implement the desired functionality by overloastnéunctional
A Typically check internal (packet) buffers against request packet

A For a slave module, turn the request into a response (without altering state)

A For an interconnect module, forward the request through the appropriate master port using
sendFunctional

A Potentially after performing snoops by issusegdFunctionalSnoop

masterPort.sendFunctional(pkt); > MySlavePort::recvFunctional(PacketPtr pkt)
/I packet is now a response {

©ARM 2017

ARM

1

92

Atomic transport interface

A On a master port we send a request packet ussegdAtomic
A This in turn callsecvAtomicon the connected slave port
A For a specific slave port we implement the desired functionality by overloagtrg\tomic
A For a slave modul@erform any state updateand turn the request into a response
A For an interconnect modulg@erform any state updateand forward the request through the
appropriate master port usingendAtomic
A Potentially after performing snoops by issusegndAtomicSnoop
A Return an approximate latency

Tick latency = masterPort.sendAtomic(pkt); ———> MysSlavePort::recvAtomic(PacketPtr pkt)
/I packet is now a response {

return latency;

}

©ARM 2017

ARM

1

93

Timing transport interface

A On a master port wetry to send a request packet usisgndTimingReq

A This in turn callsecvTimingon the connected slave port

A For a specific slave port we implement the desired functionality by overloasing@imingReq
A Perform state updates and potentially forward request packet
A For a slave module, typically schedule an action to send a response at a later time

A A slave port can choose not to accept a request packet by returning false
A The slave port later has to cakendRetryRedo alert the master port to try again

bool success = masterPort.sendTimingReq(pkt); ————> MySlavePort::recvTimingReq(PacketPtr pkt)
if (success) { {
Il request packet is sent assert(pkt->isRequest());
}else { return true/false;
/[failed, wait for recvReqRetry from slave port }
}
©ARM 2017

ARM

1

Ti ming transport 1 nterf

A Responses follow a symmetric pattern in thigposite direction
A On aslave portwe try to send aresponse packaiisingsendTiming
A This in turn callsecvTimingon the connectednaster port

A For a specific master port we implement the desired functionality by overloadawj iming

A Perform state updates and potentially forward response packet
A For a master module, typically schedule a succeeding request

A A master port can choose not to accept a response packet by returning false
A The master port later has to calendRetryResp alert the slave port to try again

MyMasterPort::recvTimingResp(PacketPtr pkt) «—— bool success = slavePort.sendTimingResp(pkt);
{ if (success) {

assert(pkt->isResponse()); Il response packet is sent

yelse { ...

return true/false;

}

94 ©ARM 2017 ARM

Andreas Sandberg

©ARM 2017

CPU models overview

BaseCPU

==

N o= -

\ \

/
BaseKvmCPU : : BaseSimpIeCPL:l TraceCPU DerivO3CPU MinorCPU
\

/

==

—_—— e o —_— e o = = = 7

ArmV8KvmCPU
X86KvmCPU AtomicSimpleCPU
A No timing A Some timing A Some timing A Full timing
A No caches A Caches A Caches A Caches |
A No BP A Limited BPs A No BPs A Branch predictors
A Realljast A Fast A Fast A Slow

97 ©ARM 2017 ARM

1

98

Atomic Simple CPU

A On every CPU tick() perform all
operations for an instruction

A Memory accesses use atomic
methods

A Fastest functional simulation
A Except for KVMaccelerated CPUs

©ARM 2017

Cycle

0

tick()

sendAtomic()

sendAtomic(

sendAtomic(

src/cpul/simple/atomic/*

ARM

1

99

Timing Simple CPU
A Memory accesses use timing path

A CPU waits until memory access
returns

A Fast, provides some level of timing

©ARM 2017

src/cpu/simple/timing/*

ARM

Detalled CPU Models

A Parameterizable pipeline models w/SMT support

A Two Types
A MinorCPUO Parameterizable tnrder pipeline model
A O3CPUOJ Parameterizable owutf-order pipeline model
AOExecute I n Executedo, detailed model
A Roughly an ordeof-magnitude slower than Simple
A Models the timing for each pipeline stage
A Forces both timing and execution of simulation to be accurate
A Important for Coherence, I/O, Multiprocessor Studies;

100 ©ARM 2017 ARM

INn-Order CPU Model

AModel s a estmgeaqipelihnar d o 4
A Fetchl, Fetch2, Decode, Execute

A Key Resources
A Cache, Executio®ranchPredictqretc.
A Pipeline stages

101 ©ARM 2017 ARM

Out-of-Order (O3) CPU Model

A Defaults to a #stage pipeline
A Fetch, Decode, Rename, Issue, Exetitagback, Commit
A Model varying amount of stages by changing the delay between them
A For examplefetchToDecodeDelay

A Key Resources
A Physical Registers, I1Q, LSQ, ROB, Functional Units

102 ©ARM 2017 ARM

Important CPU interfaces

A BaseCPU
A Base class for all CPU models
AProvides a common interface for checkpoint.

A Even used by KVMased CPUs

A ThreadContext
A Interface for accessing total architectural state of a single thread (PC, registers, etc.)
A Holds pointers to important structures (TLB, CPU, etc.)
A CPU models typically implement custom versions or 8gapleThread

A ExecContext
A Abstract interface defining how an instruction interface with the CPU model

103 ©ARM 2017 ARM

1

Staticlnst

A Represents a decoded instruction

A Has classifications of thest
A Corresponds to the binary machinast
A Only has static information

A Has all the methods needed to execute an instruction
A Tells whichregsare source andlest
A Contains the execute() function
A ISA parser generates execute() foriabts

105 ©ARM 2017

ARM

Dyninst

A Complex CPU models need to track resources used by instructions

A Dynamic version o$taticlnst
A Used to hold extra information for ilight instructions
A Holds PC, Results, Branch Prediction Status
A Interface for TLB translations

A Specialized versions for detailed CPU models

106 ©ARM 2017 ARM

Examples

A Virtualizationbased CPUBaseKvmCPU
A Seesrc / cpu/ kvm/base.{ cc,hh } andsrc/cpu/kvm/BaseKvmCPU.py
A Implements the basic interfaces required by all CPU model
A Reasonably small and well documented
A Doesnotsimulate instructions or implemefixecContext
A Simplest possible simulated CFRAtomicSimpleCPU

A Seesrc / cpu/simple/{ base.cc,base.hh,atomic.cc,atomic.hh :
AtomicSimpleCPU.py}

A Minimal simulated CPU that includes SMT

ASI mpl est WMma&@PUOG model
A Seesrc / cpu/minor/*
A Implements a pipelined-order CPU

108 ©ARM 2017 ARM

©ARM 2017

1

Accelerating gem5

A Switching modes

A Checkpoints
A boot Linux-> checkpoint
A run multiple configurations in parallel
A run multiple checkpoints in parallel

A Multi-threading
A multiple queues
A multiple workers execute events
A data sharing and tight coupling limits spee

A Multi-processed gem5
A for design space explorations

mi |

110 ©ARM 2017

ARM

1

e

Distributed gem5 simulation

A gemb5 running in parallel on a cluster of host machin

A Packet forwarding engine

A Forward packets among the simulated systems
A Synchronize the distributed simulation
A Simulate network topology

A Tested with ~30 nodes, 100s planned

111 ©ARM 2017

Host #1
simulatec

gems5S process

simulatec

Packet
forwarding

Host #2

simulatec

ARM

Object Diagram : Simulating andde Cluster Example

simulated compute

node

Root

NSGigE

TCPlface

simulated Ethernet switch | simulated compute
' node
Root
Root

NSGigE

TCPlface

TCP socket TCP socket

Elastic Trace# fast, realistic memory exploration

A Highlevel OOOQO core model —

=

q

(B) L2 size IMB>2MB /| Meanerror=14%
/7

: : o 1.1
speedy simulation O , | a LS
. v =
. . —_ LLI
A Elastic replay 008 -0
A Highlevel synchronisation event /— 5x-8x => ~IMIPS
Simulation time of Trace CPU relative to O3 tro
A Predict scalability for SMPs i I&
s
A Additional 10x speedup | i
& 3} 13
21 12
1} 11
0 - 0
F EFEE S0 € & °‘°z°°‘°* S8 &
@&Q é‘é /‘(\0(\,{' &9 .0(9 ’b\,o(\ o & OQ\ Q\a./ N
* ‘(\& &&®0° é‘c 2 N i <
S N
@0 &£ QQ}
113 ©ARM 2017 & ARM

Data Profiling and Heterogeneous Memory

A Address rising cost of communication
A Optimize data structures to improve cache utilization and efficiency
A Optimize data storage onto heterogeneous memories

114 ©ARM 2017 ARM

