
Title 44pt sentence case

Affiliations 24pt sentence case

20pt sentence case

© ARM 2017

Architectural Exploration with
gem5

Andreas Sandberg

Stephan Diestelhorst

William Wang

Xi’An: ASPLOS 2017

ARM Research

2017-04-09

© ARM 2017 2

Text 54pt sentence case This is an interactive presentation

Please ask questions!
Even if they are in:

• English

• Chinese

• Swedish

• German

© ARM 2017 3

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Agenda

 Presenters: Andreas Sandberg, William Wang, Stephan Diestelhorst (ARM Cambridge,
UK)

 13:00 Introduction (10 min) – Stephan

 13:10 Getting Started (15 min) – William

 13:25 Configuration (25 min) – Andreas

 13:50 Debug & Trace (20 min) – William

 14:10 Creating SimObjects (20 min) – Andreas

 14:30 Coffee Break (30 min)

 15:00 Memory System (40 min) – Stephan

 15:40 CPU Models (20 min) – Andreas

 16:00 Advanced Features (45 min) – all

 16:45 Contributing to gem5 (20 min) – Andreas

© ARM 2017

What is gem5?

© ARM 2017 7

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Level of detail

 HW Virtualization

 Very no/limited timing

 The same Host/guest ISA

 Functional mode

 No timing, chain basic blocks of instructions

 Can add cache models for warming

 Timing mode

 Single time for execute and memory lookup

 Advanced on bundle

 Detailed mode

 Full out-of-order, in-order CPU models

 Hit-under-miss, reodering, …

µarch Exploration

HW Validation

Perf. Validation

Cycle Accurate

1–50 KIPS

RTL simulation

High-level perf./power

Architecture exploration

Approximately Timed

0.2–3 MIPS

gem5

Loosely Timed

50–200 MIPS

Qemu

SW Dev

HW Virt.

gem5 + kvm

GIPS

© ARM 2017 8

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Users and contributors

 Widely used in academia and industry

 Contributions from

 ARM, AMD, Google,…

 Wisconsin, Cambridge, Michigan, BSC, …
0

200

400

600

800

1000

1200

2011 2012 2013 2014 2015 2016

Publications with gem5

© ARM 2017 9

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

When not to use gem5

 Performance validation

 gem5 is not a cycle-accurate microarchitecture model!

 This typically requires more accurate models such as RTL simulation.

 Commercial products such as ARM CycleModels operate in this space.

 Core microarchitecture exploration

 Only do this if you have a custom, detailed, CPU model!

 gem5’s core models were not designed to replace more accurate microarchitectural models.

 To validate functional correctness or test bleeding-edge ISA improvements

 gem5 is not as rigorously tested as commercial products.

 New (ARMv8.0+) or optional instructions are sometimes not implemented

 Commercial products such as ARM FastModels offer better reliability in this space.

© ARM 2017 10

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Why gem5?

 Runs real workloads

 Analyze workloads that customers use and care about

 … including complex workloads such as Android

 Comprehensive model library

 Memory and I/O devices

 Full OS, Web browsers

 Clients and servers

 Rapid early prototyping
 New ideas can be tested quickly

 System-level impact can be quantified

 System-level insights
 Enables us to study complex

memory-system interactions

 Can be wired to custom models

 Add detail where it matters, when it matters!

Ubuntu (Linux 4.x) Android Nougat

But not a microarchitectural

model out of the box!

© ARM 2017

Getting Started

William Wang

© ARM 2017 13

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Prerequisites

 Operating system:

 OSX, Linux

 Limited support for Windows 10 with a Linux environment

 Software:

 git

 Python 2.7 (dev packages)

 SCons

 gcc 4.8 or clang 3.1 (or newer)

 SWIG 2.0.4 or newer

 make

 Optional:

 dtc (to compile device trees)

 ARMv8 cross compilers (to compile workloads)

 python-pydot (to generate system diagrams)

© ARM 2017 14

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Compiling gem5

 Guest architecture

 Several architectures in the source

tree.

 Most common ones are:

 ARM

 NULL – Used for trace-drive simulation

 X86 – Popular in academia, but very

strange timing behavior

 Optimization level:

 debug: Debug symbols, no/few

optimizations

 opt: Debug symbols + most

optimizations

 fast: No symbols + even more

optimizations

$ scons build/ARM/gem5.opt

© ARM 2017 15

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Compiling gem5’s device trees

1. sudo apt install device-tree-compiler

2. make –C system/arm/dt

 Device trees are used to describe hard-to-discover devices

 armv8_gem5_v1_Ncpu.dtb

 Traditional CMP/SMP configuration with N cores

 Built from armv8.dts and platforms/vexpress_gem5_v1.dtsi

 armv8_gem5_v1_big_little_M_N.dtb

 bigLittle configurations with M big cores and N small cores

 Built from armv8.dts and platforms/vexpress_gem5_v1.dtsi

© ARM 2017 16

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Compiling Linux for gem5

1. sudo apt install gcc-aarch64-linux-gnu

2. git clone -b gem5/v4.4 https://github.com/gem5/linux-arm-gem5

3. cd linux-arm-gem5

4. make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- gem5_defconfig

5. make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- -j `nproc`

 Builds the default kernel configuration for gem5

 Has support for most of the devices that gem5 supports

https://github.com/gem5/linux-arm-gem5

© ARM 2017 17

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Example disk images

 Example kernels and disk images can be downloaded from gem5.org/Download

 This includes pre-compiled boot loaders

 Old but useful to get started

 Download and extract this into a new directory:
 wget http://www.gem5.org/dist/current/arm/aarch-system-2014-10.tar.xz

 mkdir dist; cd dist

 tar xvf ../aarch-system-2014-10.tar.xz

 Set the M5_PATH variable to point to this directory:

 export M5_PATH=/path/to/dist

 Most example scripts try to find files using M5_PATH

 Kernels/boot loaders/device trees in ${M5_PATH}/binaries

 Disk images in ${M5_PATH}/disks

http://www.gem5.org/dist/current/arm/aarch-system-2014-10.tar.xz

© ARM 2017 18

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Running an example script

 Simulates a bL system with 1+1 cores

 Uses a functional ‘atomic’ CPU model

 Use the ‘timing’ CPU type for an example OoO + InO configuration

$ build/ARM/gem5.opt configs/example/arm/fs_bigLITTLE.py \

--kernel path/to/vmlinux \

--cpu-type atomic \

--dtb $PWD/system/arm/dt/armv8_gem5_v1_big_little_1_1.dtb \

--disk your_disk_image.img

© ARM 2017 19

Text 54pt sentence case Demo

© ARM 2017

Configuration and Control

Andreas Sandberg

© ARM 2017 21

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Design philosophy

 gem5 is conceptually a Python library implemented in C++

 Configured by instantiating Python classes with matching C++ classes

 Model parameters exposed as attributes in Python

 Running is controlled from Python, but implemented in C++

 Configuration and running are two distinct steps

 Configuration phase ends with a call to instantiate the C++ world

 Parameters cannot be changed after the C++ world has been created

© ARM 2017 22

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Useful tricks

 gem5 can be launched interactively

 Use the -i option

 Pretty prompt if ipython has been installed

 Still requires a simulation script

 Ignore configs/example/{fs,se}.py and configs/common/FSConfig.py

 Far too complex

 Tries to handle every single use case in a single configuration file

 Good configuration examples:

 configs/learning_gem5/

 configs/example/arm/

© ARM 2017 23

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Simulated system

C++

Python

Control flow

Instantiate objects

Instantiate C++

objects

m5.instantiate()

Create Python

objects
Run simulation

m5.simulate()

Simulate in C++

Running guest

code

C
al

lb
ac

k
E
x
it
 e

ve
n
t

Run simulation

m5.simulate()

Simulate in C++

Running guest

code

C
al

lb
ac

k
E
x
it
 e

ve
n
t

© ARM 2017 24

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

General structure

 The simulator contains exactly one Root object

 Controls global configuration options

 root = Root(full_system=True)

 The root object contains one or more System instances

 A system represents a shared memory machine

 Contains devices, CPUs, and memories

 Multiple system may be connected using network interfaces

 Cluster on cluster simulation

 Not within the scope of this presentation

© ARM 2017 25

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

System Overview

© ARM 2017 26

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Creating a “simple” system

 The system contains basic platform devices

 Interrupt controllers, PCI bridge, debug UART

 Sets up the boot loader and kernel as well

 See examples in config/example/arm:

 SimpleSystem (devices.py) defines a basic ARM system with PCI support

 Instantiated by createSystem() in fs_bigLITTLE.py

© ARM 2017 27

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Overriding model parameters

import m5

class L1DCache(m5.objects.Cache):

assoc = 2

size = '16kB'

class L1ICache(L1DCache):

assoc = 16

l1i = L1ICache(assoc=8,

repl=m5.objects.RandomRepl())

• Use defaults from L1DCache

• Override associativity again

• Use gem5’s base Cache

• Override associativity

• Override size

• Override parameters at

instantiation time

• We’ll cover memory ports later

© ARM 2017 28

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Running

m5.instantiate()

event = m5.simulate()

print 'Exiting @ tick %i: %s' \

% (m5.curTick(),

event.getCause())

m5.simulate(m5.tick.fromSeconds(0.1))

• Instantiate the C++ world

• Start the simulation

• Print why the simulator exited

• Sometimes desirable to call

m5.simulate() again.

• Run for a fixed number of

simulated seconds

© ARM 2017 29

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Creating Checkpoints

m5.checkpoint('name.cpt')

 Checkpoints can be used to store the simulator’s state

 Can be used to implement SimPoints or similar methodologies

 Checkpoint limitations:

 The act of taking a checkpoint affects system state!

 Checkpoints don’t store cache state

 Checkpoints don’t store pipeline state

© ARM 2017 30

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Restoring Checkpoints

m5.instantiate('name.cpt')

event = m5.simulate()

• Instantiate system and load

state from checkpoint

• Run in the same way as before

© ARM 2017 31

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Guest to simulation script communication

system.exit_on_work_items = True

…

event = m5.simulate()

#include "m5op.h"

m5_work_begin(id, 0);

// Region of interest

m5_work_end(id, 0);

• Work item handling in Python

• Exit event will contain

information about work items

• Include the m5op header

• Remember to link with libm5.a

• Annotate your regions of

interest

© ARM 2017 32

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Exit Events

event.getCause() event.getCode() Description

user interrupt received - User pressed Ctrl+C

simulate() limit reached - gem5 reached the specified

time limit

m5_exit instruction

encountered

Exit code from guest Guest executed m5_exit()

m5_fail instruction

encountered

Failure code from guest Guest executed m5_fail()

checkpoint - Guest executed

m5_checkpoint()

workbegin/workend Work item ID Guest work item annotation

© ARM 2017 33

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Dumping statistics

 Can be requested from Python:

 m5.stats.dump(): Dump statistics

 m5.stats.reset(): Reset stat counters

 Guest command line:
 m5 dumpstats [[delay] [period]]

 m5 dumpresetstas [[delay] [period]]

 Guest code using libm5.a:

 m5_dump_stats(delay, periodicity): Dump statistics

 m5_dumpreset_stats(delay, periodicity): Dump & reset statistics

© ARM 2017 34

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Examples

 Simple full system configuration file: ARM big.LITTLE configuration example

 configs/example/arm/{fs_bigLittle.py, devices.py}

 Demonstrates how to setup a single system

 Reasonably small and well documented

 Distributed multi-system configuration:

 configs/example/arm/dist_bigLittle.py

 Reuses the configuration file above

 Simple syscall emulation mode example: Jason Lowe-Power’s Learning gem5

 configs/learning_gem5/part1

© ARM 2017

Debugging

William Wang

© ARM 2017 36

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Debugging Facilities

 Tracing

 Instruction tracing

 Diffing traces

 Using gdb to debug gem5

 Debugging C++ and gdb-callable functions

 Remote debugging

 Pipeline viewer

© ARM 2017 37

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Tracing/Debugging

 printf() is a nice debugging tool
 Keep good print statements in code and selectively enable them

 Lots of debug output can be a very good thing when a problem arises

 Use DPRINTFs in code

 DPRINTF(TLB, "Inserting entry into TLB with pfn:%#x…)

 Example flags:
 Fetch, Decode, Ethernet, Exec, TLB, DMA, Bus, Cache, O3CPUAll

 Print out all flags with ./build/ARM/gem5.opt -- debug-help

 Enabled on the command line
 --debug-flags=Exec

 --debug-start=30000

 --debug-file=my_trace.out

 Enable the flag Exec; Start at tick 30000; Write to my_trace.out

© ARM 2017 38

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Sample Run with Debugging

22:44:28 [/work/gem5] ./build/ARM/gem5.opt --debug-flags=Decode --

debug-start=50000-- debug-file=my_trace.out configs/example/se.py -c

tests/test-progs/hello/bin/arm/linux/hello

…

**** REAL SIMULATION ****

info: Entering event queue @ 0. Starting simulation...

Hello world!

Exiting @ tick 3107500 because target called exit()

Command Line:

my_trace.out:

2:44:47 [/work/gem5] head m5out/my_trace.out

50000: system.cpu: Decode: Decoded cmps instruction: 0xe353001e

50500: system.cpu: Decode: Decoded ldr instruction: 0x979ff103

51000: system.cpu: Decode: Decoded ldr instruction: 0xe5107004

51500: system.cpu: Decode: Decoded ldr instruction: 0xe4903008

52000: system.cpu: Decode: Decoded addi_uop instruction: 0xe4903008

52500: system.cpu: Decode: Decoded cmps instruction: 0xe3530000

53000: system.cpu: Decode: Decoded b instruction: 0x1affff84

53500: system.cpu: Decode: Decoded sub instruction: 0xe2433003

54000: system.cpu: Decode: Decoded cmps instruction: 0xe353001e

54500: system.cpu: Decode: Decoded ldr instruction: 0x979ff103

© ARM 2017 39

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Adding Your Own Flag

 Print statements put in source code

 Encourage you to add ones to your models or contribute ones you find particularly useful

 Macros remove them from the gem5.fast binary

 There is no performance penalty for adding them

 To enable them you need to run gem5.opt or gem5.debug

 Adding one with an existing flag
 DPRINTF(<flag>, “normal printf %s\n”, “arguments”);

 To add a new flag add the following in a Sconscript
 DebugFlag(‘MyNewFlag’)

 Include corresponding header, e.g. #include “debug/MyNewFlag.hh”

© ARM 2017 40

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Instruction Tracing

 Separate from the general debug/trace facility

 But both are enabled the same way

 Per-instruction records populated as instruction executes

 Start with PC and mnemonic

 Add argument and result values as they become known

 Printed to trace when instruction completes

 Flags for printing cycle, symbolic addresses, etc.

2:44:47 [/work/gem5] head m5out/my_trace.out

50000: T0 : 0x14468 : cmps r3, #30 : IntAlu : D=0x00000000

50500: T0 : 0x1446c : ldrls pc, [pc, r3 LSL #2] : MemRead : D=0x00014640 A=0x14480

51000: T0 : 0x14640 : ldr r7, [r0, #-4] : MemRead : D=0x00001000 A=0xbeffff0c

51500: T0 : 0x14644.0 : ldr r3, [r0] #8 : MemRead : D=0x00000011 A=0xbeffff10

52000: T0 : 0x14644.1 : addi_uop r0, r0, #8 : IntAlu : D=0xbeffff18

52500: T0 : 0x14648 : cmps r3, #0 : IntAlu : D=0x00000001

53000: T0 : 0x1464c : bne : IntAlu :

© ARM 2017 41

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Using GDB with gem5

 Several gem5 functions are designed to be called from GDB

 schedBreakCycle() – also with --debug-break

 setDebugFlag()/clearDebugFlag()

 dumpDebugStatus()

 eventqDump()

 SimObject::find()

 takeCheckpoint()

© ARM 2017 42

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Using GDB with gem5
2:44:47 [/work/gem5] gdb --args ./build/ARM/gem5.opt

configs/example/fs.py

GNU gdb Fedora (6.8-37.el5)

...(gdb) b main

Breakpoint 1 at 0x4090b0: file build/ARM/sim/main.cc, line 40.

(gdb) run

Breakpoint 1, main (argc=2, argv=0x7fffa59725f8) at

build/ARM/sim/main.cc

main(int argc, char **argv)

(gdb) call schedBreakCycle(1000000)

(gdb) continue

Continuing.

gem5 Simulator System

...

0: system.remote_gdb.listener: listening for remote gdb #0 on

port 7000

**** REAL SIMULATION ****

info: Entering event queue @ 0. Starting simulation...

Program received signal SIGTRAP, Trace/breakpoint trap.

0x0000003ccb6306f7 in kill () from /lib64/libc.so.6

© ARM 2017 43

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Using GDB with gem5
(gdb) p _curTick

$1 = 1000000

(gdb) call setDebugFlag("Exec")

(gdb) call schedBreakCycle(1001000)

(gdb) continue

Continuing.

1000000: system.cpu T0 : @_stext+148. 1 : addi_uop r0, r0, #4 : IntAlu

: D=0x00004c30

1000500: system.cpu T0 : @_stext+152 : teqs r0, r6 : IntAlu :

D=0x00000000

Program received signal SIGTRAP, Trace/breakpoint trap.

0x0000003ccb6306f7 in kill () from /lib64/libc.so.6
(gdb) print SimObject::find("system.cpu")

$2 = (SimObject *) 0x19cba130

(gdb) print (BaseCPU*)SimObject::find("system.cpu")

$3 = (BaseCPU *) 0x19cba130

(gdb) p $3->instCnt

$4 = 431

© ARM 2017 44

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Diffing Traces

 Often useful to compare traces from two simulations
 Find where known good and modified simulators diverge

 Standard diff only works on files (not pipes)

 …but you really don’t want to run the simulation to completion first

 util/rundiff

 Perl script for diffing two pipes on the fly

 util/tracediff

 Handy wrapper for using rundiff to compare gem5 outputs

 tracediff “a/gem5.opt|b/gem5.opt” –debug-flags=Exec

 Compares instructions traces from two builds of gem5

 See comments for details

© ARM 2017 45

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Advanced Trace Diffing

 Sometimes if you run into a nasty bug it’s hard to compare apples-to-apples traces

 Different cycles counts, different code paths from interrupts/timers

 Some mechanisms that can help:

 -ExecTicks don’t print out ticks

 -ExecKernel don’t print out kernel code

 -ExecUserdon’t print out user code

 ExecAsid print out ASID of currently running process

 State trace

 PTRACE program that runs binary on real system and compares cycle-by-cycle to gem5

 Supports ARM, x86, SPARC

 See wiki for more information [http://gem5.org/Trace_Based_Debugging]

© ARM 2017 46

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Checker CPU

 Runs a complex CPU model such as the O3 model in tandem with a special

Atomic CPU model

 Checker re-executes and compares architectural state for each instruction

executed by complex model at commit

 Used to help determine where a complex model begins executing instructions

incorrectly in complex code

 Checker cannot be used to debug MP or SMT systems

 Checker cannot verify proper handling of interrupts

 Certain instructions must be marked unverifiable i.e. “wfi”

© ARM 2017 47

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Remote Debugging
./build/ARM/gem5.opt configs/example/fs.py

gem5 Simulator System

...

command line: ./build/ARM/gem5.opt configs/example/fs.py

Global frequency set at 1000000000000 ticks per second

info: kernel located at: /dist/binaries/vmlinux.arm

Listening for system connection on port 5900

Listening for system connection on port 3456

0: system.remote_gdb.listener: listening for remote gdb #0 on

port 7000 info: Entering event queue @ 0. Starting

simulation...

© ARM 2017 48

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Remote Debugging
GNU gdb (Sourcery G++ Lite 2010.09-50) 7.2.50.20100908-cvs

Copyright (C) 2010 Free Software Foundation, Inc.

...

(gdb) symbol-file /dist/binaries/vmlinux.arm

Reading symbols from /dist/binaries/vmlinux.arm...done.

(gdb) set remote Z-packet on

(gdb) set tdesc filename arm-with-neon.xml

(gdb) target remote 127.0.0.1:7000

Remote debugging using 127.0.0.1:7000

cache_init_objs (cachep=0xc7c00240, flags=3351249472) at

mm/slab.c:2658

(gdb) step

sighand_ctor (data=0xc7ead060) at kernel/fork.c:1467

(gdb) info registers

r0 0xc7ead060 -940912544

r1 0x5201312

r2 0xc002f1e4 -1073548828

r3 0xc7ead060 -940912544

r4 0x00

r5 0xc7ead020 -940912608

…

ARMv7 only, ARMv8 doesn’t need

© ARM 2017 50

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

O3 Pipeline Viewer
Use --debug-flags=O3PipeView and util/o3-pipeview.py

© ARM 2017

Adding new models

Andreas Sandberg

© ARM 2017 52

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

How are models implemented

Python

wrappers

Parameter

structs
C++ model

Generates
Python

description

Describes parameters and

exported methods

Implements your model Includes

© ARM 2017 53

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

How are models instantiated

C++ model

Python objectSimulation script
Python

wrappers

Parameter

struct

obj = MyObj() m5.instantiate()

MyObjParams::create()

Instantiate and populate

MyObjParams

© ARM 2017 54

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Discrete event based simulation

 Discrete: Handles time in discrete steps

 Each step is a tick

 Usually 1THz in gem5

 Simulator skips to the next event on the timeline

Time

Event handler

Event handlerMyObj::startup()
Schedule

Call

© ARM 2017 55

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Creating a SimObject

 Derive Python class from Python SimObject

 Define parameters, ports and configuration

 Parameters in Python are automatically turned into C++ struct and passed to C++ object

 Add Python file to SConscript

 Or, place it in an existing Python file

 Derive C++ class from C++ SimObject

 Defines the simulation behavior

 See src/sim/sim_object.{cc,hh}

 Add C++ filename to SConscript in directory of new object

 Need to make sure you have a create factory method for the object

 Look at the bottom of an existing object for info

 Recompile

© ARM 2017 56

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

SimObject initialization

Instantiation

• Uses a factory method:
MyObjectParams::create()

Register stats

• MyObject::regStats()

Initialize architectural
state

• MyObject::initState()

Reset stats

• MyObject::resetStats()

Start model

• MyObject::startup()

© ARM 2017 57

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Parameters and SimObjects

 Parameters to SimObjects are synthesized from Python structures

 Object hierarchy in Python reflects the C++ world

 This example is from src/dev/arm/Realview.py

class Pl011(Uart):

type = 'Pl011'

cxx_header = "dev/arm/pl011.hh"

gic = Param.Gic(Parent.any, "Gic to use for interrupting")

int_num = Param.UInt32("Interrupt number that connects to GIC")

end_on_eot = Param.Bool(False, "End the simulation when …")

int_delay = Param.Latency("100ns", "Time between action …")

Python class name Python base class

C++ class

Parameter type

Default value

Parameter DescriptionParameter name

C++ header

© ARM 2017 58

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

SimObject Parameters

 Parameters can be:

 Scalars – Param.Unsigned(5), Param.Float(5.0), Param.UInt32(42), …

 Arrays – VectorParam.Unsigned([1,1,2,3])

 SimObjects – Param.PhysicalMemory(…)

 Arrays of SimObjects –VectorParam.PhysicalMemory(Parent.any)

 Memory address ranges– Param. AddrRange(0,Addr.max))

 Normally converted from strings with units :

 Latency – Param.Latency(’15ns’) Tick

 Frequency – Param.Frequency(‘100MHz’) -> Tick

 MemorySize – Param.MemorySize(‘1GB’) -> Bytes

 Time – Param.Time(‘Mon Mar 25 09:00:00 CST 2012’)

 Ethernet Address – Param.EthernetAddr(“90:00:AC:42:45:00”)

© ARM 2017 59

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Auto-generated Header file
#ifndef __PARAMS__Pl011__

#define __PARAMS__Pl011__

class Pl011;

#include <cstddef>

#include "base/types.hh”

#include "params/Gic.hh"

##include "base/types.hh"

#include "params/Uart.hh"

struct Pl011Params

: public UartParams

{

Pl011 * create();

uint32_t int_num;

Gic * gic;

bool end_on_eot;

Tick int_delay;

};

#endif // __PARAMS__Pl011__

class Pl011(Uart):

type = 'Pl011'

gic = Param.Gic(Parent.any, …)

int_num = Param.UInt32(…)

end_on_eot = Param.Bool(False, "End …)

int_delay = Param.Latency("100ns", "Time …")

Factory method

© ARM 2017 60

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

How Parameters are used in C++

Pl011::Pl011(const Pl011Params *p)

: Uart(p), …,

intNum(p->int_num), gic(p->gic),

endOnEOT(p->end_on_eot), intDelay(p->int_delay)

{

…

}

You can also access parameters through params() accessor after instantiation.

src/dev/arm/pl011.cc:

© ARM 2017 61

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Creating/Using Events

 One of the most common things in an event driven simulator is

scheduling events

 Declaring events and handlers is easy:

 Scheduling them is easy too:

/* Handle when a timer event occurs */

void timerHappened();

EventWrapper<MyClass, &MyClass::timerHappend> event;

/* something that requires me to schedule an event at time t*/

if (event.scheduled())

reschedule(event, curTick() + t);

else

schedule(event, curTick() + t);

© ARM 2017 62

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Checkpointing SimObject State

 If your object has state, that needs to be written to the checkpoint

 Checkpointing takes place on a drained simulator

 Draining ensures that microarchitectural state is flushed

 Models may need to flush pipelines and wait for outstanding requests to finish.

 Checkpoint implemented by overriding
SimObject::serialize(CheckpointOut &)

 Save necessary state

 No need to store parameters from the config systyem!

 Use SERIALIZE_*() macros or paramOut

 To implement restore, override
SimObject::unserialize(CheckpointIn &)

 Use UNSERIALIZE_*() macros or paramIn

© ARM 2017 63

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Creating a checkpoint

Trigger checkpointing

• Script call:
m5.checkpoint(“my.cpt”)

Drain the simulator

• Ensures a well-defined
architectural state

• Flushes CPU pipelines

• Writes back caches

Serialize objects

• MyObject::serialize(
CheckpointOut&)

Resume simulation

• Script call:
m5.simulate()

Resume drained objects

• MyObject::drainResume()

© ARM 2017 64

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Restoring from a checkpoint

Instantiation

• Uses a factory method:
MyObjectParams::create()

Register stats

• MyObject::regStats()

Restore architectural
state

• MyObject::unserialize(
CheckpointIn&)

Reset stats

• MyObject::resetStats()

Start model

• MyObject::startup()

Resume system

• MyObject::drainResume()

© ARM 2017 65

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Draining

Script requests draining

All objects

drained

Call SimObject::drain()

Done

No

Yes

Simulate until

signalDrainDone()

• Flush internal state

• Stop producing new

messages

© ARM 2017 66

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Checkpointing Example

// uint16_t control;

void

Pl011::serialize(CheckpointOut &cp) const

{

SERIALIZE_SCALAR(control);

}

void

Pl011::unserialize(CheckpointIn &cp)

{

UNSERIALIZE_SCALAR(control);

}

© ARM 2017 67

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Good Examples

 Simple IO devices: IsaFake

 See: src/dev/isa_fake.{cc,hh} and src/dev/Device.py

 Demonstrates a basic memory-mapped device using the BasicPioDevice base class

 PCI devices: PciVirtIO

 See: src/dev/virtio/pci.{cc,hh} and src/dev/VirtIO.py

 PCI device with a single BAR and interrupts

 More complex PCI device: CopyEngine

 See: src/dev/pci/copy_engine.{cc,hh} and src/dev/pci/CopyEngine.py

 PCI device with DMA support

 Python exports: PowerModelState

 See: src/sim/power/PowerModelState.py

 Exports two methods (getDynamicPower & getStaticPower) to Python

© ARM 2017 68

Text 54pt sentence case <Insert coffee break here>

© ARM 2017

Memory System

Stephan Diestelhorst

© ARM 2017 70

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Goals

 Model a system with heterogeneous applications, running on a set of

heterogeneous processing engines, using heterogeneous memories and

interconnect
 CPU centric: capture memory system behaviour accurate enough

 Memory centric: Investigate memory subsystem and interconnect architectures

Interconnect

Processo

r
Processo

r
Processo

rCPU

Video

backend

Video

decoder
GPUGPU

GPU
GPU

DMA

DRAMDRAM
DRAM

3D-

DRAMSRAM NAND
NAND

PCM STT-RAM

Interconnect

© ARM 2017 71

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Goals, contd.

 Two worlds...

 Computation-centric simulation

 e.g. SimpleScalar, Asim etc

 More behaviourally oriented, with ad-hoc ways of describing parallel behaviours and

intercommunication

 Communication-centric simulation

 e.g. SystemC+TLM2 (IEEE standard)

 More structurally oriented, with parallelism and interoperability as a key component

 gem5 is trying to balance

 Easy to extend (flexible)

 Easy to understand (well defined)

 Fast enough (to run full-system simulation at MIPS)

 Accurate enough (to draw the right conclusions)

© ARM 2017 72

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Event Simulation

 Event-driven

 no activity -> no clocking

 event queue

 Deterministic

 fixed random number seed

 no dependence on host addresses

 Multi-Queue

 multiple workers

event queue

cache lookup

ti
m

e

curTick

cache

response

Cache Model

© ARM 2017 73

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Ports, Masters and Slaves

 MemObjects are connected through master and slave ports

 A master module has at least one master port, a slave module at least one slave

port, and an interconnect module at least one of each

 A master port always connects to a slave port

 Similar to TLM-2 notation

CPU

memory0

bus

memory1

Master

module

Interconnect

module

Slave

module

Slave portMaster port

I$

D

$

© ARM 2017 74

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Transport interfaces

 Atomic

 Similar to loosely timed in TLM

 Blocking: Requests completes in a single call chain

 Each component along the way adds latency to the request

 Timing

 Similar to approximately timed in TLM

 Asynchronous: One call to send a packet, callback when response is ready.

 Functional

 Debug interface that doesn’t affect coherency states.

 Blocking: Requests complete within a single call chain.

The Atomic and Timing

interfaces are mutually

exclusive

© ARM 2017 75

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Communication Monitor

 Insert as a structural component where stats are desired
memmonitor = CommMonitor()

membus.master = memmonitor.slave

memmonitor.master = memctrl.slave

 A wide range of communication stats

 bandwidth, latency, inter-transaction (read/write) time, outstanding transactions, address

heatmap, etc

 Provides an attachment point for communication probes:

 Tracing (using protobuf)

 Stack distance monitoring

 Footprint estimation

0
10
20
30
40
50
60
70

D
is

tr
ib

u
ti
o
n
 (

%
)

Latency (ns)

Latency distribution

© ARM 2017 76

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Traffic generator

 Test scenarios for memory system regression and performance validation

 High-level of control for scenario creation

 Black-box models for components that are not yet modeled

 Video/baseband/accelerator for memory-system loading

 Inject requests based on (probabilistic) state-transition diagrams

 Idle, random, linear and trace replay states

idle

linear

Address

Time

linear linear linearidle idle

© ARM 2017 77

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Memory controllers

 All memories in the system inherit from AbstractMemory

 Basic single-channel memory controller

 Instantiate multiple times if required

 Interleaving support added in the bus/crossbar (to be posted)

 SimpleMemory

 Fixed latency (possibly with a variance)

 Fixed throughput (request throttling without buffering)

 SimpleDRAM

 High-level configurable DRAM controller model to mimic DDRx, LPDDRx, WideIO, HBM etc

 Memory organization: ranks, banks, row-buffer size

 Controller architecture: Read/write buffers, open/close page, mapping, scheduling policy

 Key timing constraints: tRCD, tCL, tRP, tBURST, tRFC, tREFI, tTAW/tFAW

© ARM 2017 78

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Top-down controller model

 Don’t model the actual DRAM, only the timing constraints

 DDR3/4, LPDDR2/3/4, WIO1/2, GDDR5, HBM, HMC, even PCM

 See src/mem/DRAMCtrl.py and src/mem/dram_ctrl.{hh, cc}

DRAM Memory Controller

S
y
s
te

m
 in

te
rfa

c
e

s

write queue

read queue

P
a

g
e

 p
o

lic
y
 &

 a
rb

itra
tio

n

P
H

Y
 &

 tim
in

g
 c

o
n

s
tra

in
ts

Device width

Burst length

#ranks, #banks

Page size

tRCD

tCL

tRP

tRAS

tBURST

tRFC & tRFEI

tWTR

tRRD

tFAW/tTAW

…

Hansson et al, Simulating DRAM controllers for future system architecture exploration, ISPASS’14

© ARM 2017 79

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Controller model correlation

 Comparing with a real memory controller

 Synthetic traffic sweeping bytes per activate and number of banks

 See configs/dram/sweep.py and util/dram_sweep_plot.py

gem5 model Real memory controller

64
128

192
256

0

20

40

60

80

100

8
7

6
5

4
3

2
1

80-100

60-80

40-60

20-40

0-20

Number of Banks Bytes per

Activate
64

128

192
256

0

20

40

60

80

100

8
7

6
5

4
3

2
1

80-100

60-80

40-60

20-40

0-20

Number of Banks
Bytes per

Activate

© ARM 2017 80

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 DRAM accounts for a large portion of system power

 Need to capture power states, and system impact

 Integrated model opens up for developing more clever strategies

 DRAMPower adapted and adopted for gem5 use-case

DRAM power modeling

• Active Energy

• Precharge Energy

• Read/Write Energy

• Background Energy

• Refresh Energy
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

AndeBench

bbench

GPU-AngryBirds

Energy Saving due to Power-Down (%)

Energy Saving due to

Power-Down (%)

64%

36%

Static Energy(mJ)

Dynamic Energy(mJ)

BBench DRAM Energy Analysis (LPDDR3 x32)

Naji et al, A High-Level DRAM Timing, Power and Area Exploration Tool, SAMOS’15

© ARM 2017 81

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 Multi-channel memory support is essential

 Emerging DRAM standards are multi-channel by nature

(LPDDR4, WIO1/2, HBM1/2, HMC)

 Interleaving support added to address range

 Understood by memory controller and interconnect

 See src/base/addr_range.hh for matching and

src/mem/xbar.{hh, cc} for actual usage

 Interleaving not visible in checkpoints

 XOR-based hashing to avoid imbalances

 Simple yet effective, and widely published

 See configs/common/MemConfig.py for system configuration

Address interleaving

Source: Micron

© ARM 2017 82

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Crossbars& Bridges

 Create rich system interconnect topologies using

a simple bus model and bus bridge

 Crossbars do address decoding and arbitration

 Distributes snoops and aggregates snoop responses

 Routes responses

 Configurable width and clock speed

 Bridges connects two buses

 Queues requests and forwards them

 Configurable amount of queuing space for requests and

responses

XBar

Core

L1i L1d

XBar

L2

L1i L1d

XBar

Core

...

XBar

XBar XBarBridge

© ARM 2017 83

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Caches

 Single cache model with several components:

 Cache: request processing, miss handling, coherence

 Tags: data storage and replacement (LRU, Random, etc.)

 Prefetcher: N-Block Ahead, Tagged Prefetching, Stride

Prefetching

 MSHR & MSHRQueue: track pending/outstanding

requests

 Also used for write buffer

 Parameters: size, hit latency, block size, associativity,

number of MSHRs (max outstanding requests)

Data

Tags

Cache

Prefetch

MSHR

© ARM 2017 84

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Coherence protocol

 MOESI bus-based snooping protocol

 Support nearly arbitrary multi-level hierarchies at the expense of some realism

 Does not enforce inclusion

 Magic “express snoops” propagate upward in zero time

 Avoid complex race conditions when snoops get delayed

 Timing is similar to some real-world configurations

 L2 keeps copies of all L1 tags

 L2 and L1s snooped in parallel

© ARM 2017 85

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 Broadcast-based coherence protocol

 Incurs performance and power cost

 Does not reflect realistic implementations

 Snoop filter goes one step towards directories

 Track sharers, based on writeback and clean eviction

 Direct snoops and benefit from locality

 Many possible implementations

 Currently ideal (infinite), no back invalidations

 Can be used with coherent crossbars on any level

 See src/mem/SnoopFilter.py and

src/mem/snoop_filter.{hh, cc}*

Snoop (probe) filtering

Source: AMD

© ARM 2017 86

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 Check adherence to consistency model

 Notion of functional reference memory is too simplistic

 Need to track valid values according to consistency

model

 Memory checker and monitors

 Tracking in src/mem/MemChecker.py and

src/mem/mem_checker.{hh, cc}

 Probing in src/mem/mem_checker_monitor.{hh, cc}

 Revamped testing

 Complex cache (tree) hierarchies in configs/examples/{memtest, memcheck}.py

 Randomly generated soak test in util/memtest-soak.py

 For any changes to the memory system, please use these

Memory system verification

L2

MemChecker

Core 1

Monitor

L1

XBar

Core 0

Monitor

L1

Core 2

Monitor

L1

© ARM 2017 87

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Ruby for Networks and Coherence

 As an alternative to its native memory system gem5 also integrates Ruby

 Create networked interconnects based on domain-specific language (SLICC) for

coherence protocols

 Detailed statistics

 e.g., Request size/type distribution, state transition frequencies, etc...

 Detailed component simulation

 Network (fixed/flexible pipeline and simple)

 Caches (Pluggable replacement policies)

 Supports Alpha and x86

 Limited ARM support about to be added

 Limited support for functional accesses

© ARM 2017 88

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Instantiating and Connecting Objects

class BaseCPU(MemObject):

icache_port = MasterPort("Instruction Port")

dcache_port = MasterPort("Data Port")

…

class BaseCache(MemObject):

cpu_side = SlavePort("Port on side closer to CPU")

mem_side = MasterPort("Port on side closer to MEM")

...

class Bus(MemObject):

slave = VectorSlavePort("vector port for connecting masters")

master = VectorMasterPort("vector port for connecting slaves")

…

system.cpu.icache_port = system.icache.cpu_side

system.cpu.dcache_port = system.dcache.cpu_side

system.icache.mem_side = system.l2bus.slave

system.dcache.mem_side = system.l2bus.slave
Memory

CPU

I$ D$

Bus

© ARM 2017 89

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Requests & Packets

 Protocol stack based on Requests and Packets

 Uniform across all MemObjects (with the exception of Ruby)

 Aimed at modelling general memory-mapped interconnects

 A master module, e.g. a CPU, changes the state of a slave module, e.g. a memory through a

Request transported between master ports and slave ports using Packets

if (req_pkt->needsResponse()) {

req_pkt->makeResponse();

} else {

delete req_pkt;

}

...

Request req(addr, size, flags, masterId);

Packet* req_pkt = new Packet(req, MemCmd::ReadReq);

...

...

delete resp_pkt;

CPU memory

© ARM 2017 90

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Requests & Packets

 Requests contain information persistent throughout a transaction

 Virtual/physical addresses, size

 MasterID uniquely identifying the module initiating the request

 Stats/debug info: PC, CPU, and thread ID

 Requests are transported as Packets

 Command (ReadReq, WriteReq, ReadResp, etc.) (MemCmd)

 Address/size (may differ from request, e.g., block aligned cache miss)

 Pointer to request and pointer to data (if any)

 Source & destination port identifiers (relative to interconnect)

 Used for routing responses back to the master

 Always follow the same path

 SenderState opaque pointer

 Enables adding arbitrary information along packet path

© ARM 2017 91

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Functional transport interface

 On a master port we send a request packet using sendFunctional

 This in turn calls recvFunctional on the connected slave port

 For a specific slave port we implement the desired functionality by overloading recvFunctional

 Typically check internal (packet) buffers against request packet

 For a slave module, turn the request into a response (without altering state)

 For an interconnect module, forward the request through the appropriate master port using

sendFunctional

 Potentially after performing snoops by issuing sendFunctionalSnoop

CPU memory

masterPort.sendFunctional(pkt);

// packet is now a response

MySlavePort::recvFunctional(PacketPtr pkt)

{

...

© ARM 2017 92

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Atomic transport interface

 On a master port we send a request packet using sendAtomic

 This in turn calls recvAtomic on the connected slave port

 For a specific slave port we implement the desired functionality by overloading recvAtomic

 For a slave module, perform any state updates and turn the request into a response

 For an interconnect module, perform any state updates and forward the request through the

appropriate master port using sendAtomic

 Potentially after performing snoops by issuing sendAtomicSnoop

 Return an approximate latency

Tick latency = masterPort.sendAtomic(pkt);

// packet is now a response

MySlavePort::recvAtomic(PacketPtr pkt)

{

...

return latency;

}

CPU memory

© ARM 2017 93

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Timing transport interface

 On a master port we try to send a request packet using sendTimingReq

 This in turn calls recvTiming on the connected slave port

 For a specific slave port we implement the desired functionality by overloading recvTimingReq

 Perform state updates and potentially forward request packet

 For a slave module, typically schedule an action to send a response at a later time

 A slave port can choose not to accept a request packet by returning false

 The slave port later has to call sendRetryReq to alert the master port to try again

bool success = masterPort.sendTimingReq(pkt);

if (success) {

// request packet is sent

...

} else {

// failed, wait for recvReqRetry from slave port

...

}

MySlavePort::recvTimingReq(PacketPtr pkt)

{

assert(pkt->isRequest());

...

return true/false;

}

CPU memory

© ARM 2017 94

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Timing transport interface (cont’d)

 Responses follow a symmetric pattern in the opposite direction

 On a slave port we try to send a response packet using sendTiming

 This in turn calls recvTiming on the connected master port

 For a specific master port we implement the desired functionality by overloading recvTiming

 Perform state updates and potentially forward response packet

 For a master module, typically schedule a succeeding request

 A master port can choose not to accept a response packet by returning false

 The master port later has to call sendRetryResp to alert the slave port to try again

bool success = slavePort.sendTimingResp(pkt);

if (success) {

// response packet is sent

...

} else { ...

MyMasterPort::recvTimingResp(PacketPtr pkt)

{

assert(pkt->isResponse());

...

return true/false;

}

CPU memory

© ARM 2017

CPU Models

Andreas Sandberg

© ARM 2017 97

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

• Some timing

• Caches

• No BPs

• Fast

• Some timing

• Caches

• Limited BPs

• Fast

• Full timing

• Caches

• Branch predictors

• Slow

• No timing

• No caches

• No BP

• Really fast

CPU models overview

BaseCPU

BaseKvmCPU TraceCPUBaseSimpleCPU

AtomicSimpleCPU

TimingSimpleCPU

DerivO3CPU MinorCPU

X86KvmCPU

ArmV8KvmCPU

© ARM 2017 98

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Atomic Simple CPU

 On every CPU tick() perform all

operations for an instruction

 Memory accesses use atomic

methods

 Fastest functional simulation

 Except for KVM-accelerated CPUs

© ARM 2017 99

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Timing Simple CPU

 Memory accesses use timing path

 CPU waits until memory access

returns

 Fast, provides some level of timing

© ARM 2017 100

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Detailed CPU Models

 Parameterizable pipeline models w/SMT support

 Two Types

 MinorCPU – Parameterizable in-order pipeline model

 O3CPU – Parameterizable out-of-order pipeline model

 “Execute in Execute”, detailed modeling

 Roughly an order-of-magnitude slower than Simple

 Models the timing for each pipeline stage

 Forces both timing and execution of simulation to be accurate

 Important for Coherence, I/O, Multiprocessor Studies, etc

© ARM 2017 101

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

In-Order CPU Model

 Models a “standard” 4-stage pipeline

 Fetch1, Fetch2, Decode, Execute

 Key Resources

 Cache, Execution, BranchPredictor, etc.

 Pipeline stages

© ARM 2017 102

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Out-of-Order (O3) CPU Model

 Defaults to a 7-stage pipeline

 Fetch, Decode, Rename, Issue, Execute, Writeback, Commit

 Model varying amount of stages by changing the delay between them

 For example: fetchToDecodeDelay

 Key Resources

 Physical Registers, IQ, LSQ, ROB, Functional Units

© ARM 2017 103

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Important CPU interfaces

 BaseCPU

 Base class for all CPU models

 Provides a common interface for checkpointing/switching/interrupts/…

 Even used by KVM-based CPUs

 ThreadContext

 Interface for accessing total architectural state of a single thread (PC, registers, etc.)

 Holds pointers to important structures (TLB, CPU, etc.)

 CPU models typically implement custom versions or use SimpleThread

 ExecContext

 Abstract interface defining how an instruction interface with the CPU model

© ARM 2017 105

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

StaticInst

 Represents a decoded instruction

 Has classifications of the inst

 Corresponds to the binary machine inst

 Only has static information

 Has all the methods needed to execute an instruction

 Tells which regs are source and dest

 Contains the execute() function

 ISA parser generates execute() for all insts

© ARM 2017 106

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

DynInst

 Complex CPU models need to track resources used by instructions

 Dynamic version of StaticInst

 Used to hold extra information for in-flight instructions

 Holds PC, Results, Branch Prediction Status

 Interface for TLB translations

 Specialized versions for detailed CPU models

© ARM 2017 108

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Examples

 Virtualization-based CPU: BaseKvmCPU

 See: src/cpu/kvm/base.{cc,hh} and src/cpu/kvm/BaseKvmCPU.py

 Implements the basic interfaces required by all CPU model

 Reasonably small and well documented

 Does not simulate instructions or implement ExecContext

 Simplest possible simulated CPU: AtomicSimpleCPU

 See: src/cpu/simple/{base.cc,base.hh,atomic.cc,atomic.hh,

AtomicSimpleCPU.py}

 Minimal simulated CPU that includes SMT

 Simplest “real” model: MinorCPU

 See src/cpu/minor/*

 Implements a pipelined in-order CPU

© ARM 2017

Advanced Features &
Capabilities

© ARM 2017 110

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 Switching modes
 (kvm +) functional + timing / detailed

 Checkpoints
 boot Linux -> checkpoint

 run multiple configurations in parallel

 run multiple checkpoints in parallel

 Multi-threading
 multiple queues

 multiple workers execute events

 data sharing and tight coupling limits speedup

 Multi-processed gem5
 for design space explorations

Accelerating gem5

© ARM 2017 111

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Host #1

Distributed gem5 simulation
Host #1

simulated

system

#1

Host #2

Host #3

Packet

forwarding

 gem5 running in parallel on a cluster of host machines

 Packet forwarding engine

 Forward packets among the simulated systems

 Synchronize the distributed simulation

 Simulate network topology

 Tested with ~30 nodes, 100s planned

gem5 process

host machine

simulated

system

#2

simulated

system

#3

© ARM 2017 112

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Object Diagram : Simulating a 2-node Cluster Example

simulated compute

node

TCPIface

SyncEvent SyncNode

simulated Ethernet switch

TCPIface

SyncEvent SyncSwitch

NSGigE

Root

EtherSwitch

TCPIface

Root

TCP socket

DistEtherLink DistEtherLink DistEtherLink

simulated compute

node

TCPIface

SyncEvent SyncNode

NSGigE

Root

DistEtherLink

TCP socket

© ARM 2017 113

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 High-level OOO core model

speedy simulation

 Capture data dependencies and MLP

 Elastic replay

 High-level synchronisation event

capture

 Predict scalability for SMPs

 Additional 10x speedup

Elastic Traces – fast, realistic memory exploration

0

2

4

6

0.8

0.9

1

1.1

Er
ro

r
(%

)

R
e

la
ti

ve
 C

P
I

(B) L2 size 1MB --> 2MB Mean error = 1.4%

5x-8x => ~1MIPS

© ARM 2017 114

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 Address rising cost of communication

 Optimize data structures to improve cache utilization and efficiency

 Optimize data storage onto heterogeneous memories

Data Profiling and Heterogeneous Memory

© ARM 2017 115

Text 54pt sentence case Graphics & Android Andreas

© ARM 2017 116

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Common Approach: CPU-Centric
 Software renderer instead of a real GPU

 Optimization friendly code

 Can be vectorized

 Easy-to-predict branches

 Large memory foot print

 Doesn’t simulate the driver

 Known to be the bottleneck for some workloads

 Horrible code

 Workload and software renderer compete

for resources

 Can significantly skew core behavior

 Affects 2D applications and 3D

applications

CPU

L1D L1I

LPDDR3

GPU

Android

Workload

CPU

L1D

L2

L1I

Display

Controller

SW renderer

© ARM 2017 118

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Full system NoMali modelling

 Passes the duck test (almost)

 Most GPU integration tests work (no pixels)

 Implements the Mali register interface & interrupts

 Accurate CPU+GPU interactions

 Runs the full driver stack

 Complex software with significant CPU component

 Limitations:

 Doesn’t produce any display output

 No memory system interactions

 Requires a properly optimized driver stack

 Use cases:

 CPU-centric studies (driver performance)

 Fast-forward (boot / long traces)

CPU

L1D L1I

LPDDR3

NoMali

Android

Workload

CPU

L1D

L2

L1I

Display

Controller

GPU drivers

De Jong, Rene, and Andreas Sandberg. "NoMali: Simulating a Realistic Graphics Driver Stack Using a Stub GPU." ISPASS 2016

© ARM 2017 119

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Why do you care?

0%

10%

20%

30%

40%

50%

Instructions IPC BP Miss Ratio DL1 Miss Ratio IL1 Miss Ratio L2 Miss Ratio DRAM Read BW

Relative Error

Software Rendering NoMali

103% 73% 135% 54%

bbench on Android K (real GPU as reference)

© ARM 2017 121

Text 54pt sentence case Power Modelling Stephan

© ARM 2017 122

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 bottom-up

 simulate gates

 toggle rates

 complex aggregation

 top-down

 high level activities

 few voltage rails

 measure real devices

+

SOC
-

Hot

Cold

Power Models

C
o

re

C
o
re

L
2

C

C

C

C

L2

DRAM

G

G

G

G

L2

Acc

Acc

Acc

Acc

Interconnect

BX
IQ

Reg
Read

Mux BR

SX0
IQ

Reg
Read

Mux ALU

SX1
IQ

Reg
Read

Mux ALU

MX
IQ

Reg
Read

Mux

ALU PLUS

IMAC

CRC32

IDIV

Other

16 uops

12 uops

12 uops

12 uops

MCQ
RCQ

128 insts

retire

64b

64b

64b

64b

64b

64b

64b

ResRen

Ren

Ren

Ren

Dec

Dec

Dec

Dec

De
co

de
 Q

Al
ig

n/
St

ee
r

Fe
tc

h
QIC

Tags

ITLB

Main
BTB

Main
GHBs

uBTB

M
ai

n
Pr

edSe
tu

p

IC
Read
128b

I0 I1 I2

Fetch Decode / Rename

Commit

Branch Execute

Integer Execute

Issue

12 P-blks

96 regs
32 branches

32 stores
64 loads

4 inst 4 uop

16x32b insts

P1 P2 F1 F2 DE RR

E1 E2 E3

B1

nBTB

Inst
Align

Inst
Align

Inst
Align

Inst
Align

IA

V-FMUL

V-FADD

V-IMAC

V-FDIV

CRYPTO2 CRYPTO4

V-ALU

V-FMUL

V-FADD

V-FCVT

V-ALU PLUS

Vector Execute

V1 V2 V3 V4

16 uops

LS0
IQ

Reg
Read

Mux

LS1
IQ

Reg
Read

Mux

12 uops

12 uops

AGEN DTLB

Setup
DC

Tags
DC

Read
FMT

AGEN DTLB

Setup
DC

Tags
DC

Read
FMT

128b

128b

D1 D2 D3 D4

Load & Store

IQ
Read

Reg
Read

Mux
VX0
IQ

I0 I1 I2 I3

IQ
Read

Reg
Read

Mux

16 uops

VX1
IQ

128b

128b

128b

128b

128b

128b

128b

128b

128b

128b

Rt/Arb Tag
Rt/

Cmp
Data1 256b

L2

Data2
Rt/

Mux

M1 M2 M3 M4 M5 M6

Ileak

Iswitch
N+ N+

Psub

Source Gate Drain

ISUB

IGIDLIGATE IREV

D
e
co

m
p
o
se

A
gg

re
ga

te

© ARM 2017 123

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Top Down vs. Bottom Up

Top-down also has uses in design-space exploration – accurate reference

© ARM 2017 124

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Top Down Power Models

 Built experimentally

 Often uses regression

 Extremely accurate

 Inflexible, often tied to a specific platform

© ARM 2017 125

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Bottom Up Power Models

 Built on theory

 E.g. McPAT – Power Area and Timing Multi- and Many- core modelling framework

 Good for design-space exploration

 Large errors (largely due to abstraction)

 Relatively slow (not suitable for run-time management)

© ARM 2017 126

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Power Modeling Based on Existing Hardware

ODROID-XU3

Exynos-5422

4x Cortex-A7

4x Cortex-A15

3. Choose PMCs:

Hierarchical cluster

analysis, correlation matrix

analysis, exhaustive search

etc.

1. Run: workloads

@ different DVFS level

@ different affinities

60 workloads used:

MiBench, MediaBench,

LMbench, NEON, OpenMP

6. Uses

• OS run-time

management

• Reference for research

• gem5 add-on

4. Build Model

• OLS multiple linear regression

• Deals with PMC multicollinearity

• Considers heteroscedasticity

2. Record:

• Performance Counters (PMCS)

• Voltage, Power

5. Validate

• K-fold cross validation

• R2: ~0.99

• 3-6% Av. Error

© ARM 2017 127

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Power&Energy Framework Overview

Derive

Power/Energy (PE) Model
(IP Characterization or otherwise)

Express PE Model

in gem5 fitting form

P&E Model Database

(Use model generator scripts

to create equivalent *.json)

Gem5 Simulation Env.PE Model Generation Env.

P&E Estimator
(Generate P&E Stats Equation)

System Controller

(Extendable)

Runtime Statistics:

Voltage, Freq, Power State,

Event Count

Clocks,

Clock Domains

Voltage Domains

Generic

DVFS

Handler

Power States**:

Definition & Migration

Ongoing activities within P&E framework

- DVFS Control Registers
- Energy Monitoring Registers**

- Temperature Monitor**

Low-level Drivers

Device Tree
Define clock domains

and associate them

with devices

CPUFreq DEVFreq CPUIdle

OSPM Policies

CPUFreq Driver

High level Drivers

** Needs to be spec’ed out

S/W Power Management Env.

© ARM 2017 128

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Why are CPU power models important?

 Design space exploration

 To see the effect of making architectural changes

 Run-time management

 CPU employs power-saving techniques (DVFS, DPM, asymmetric multi-core e.g. ARM

big.LITTLE)

 Need accurate power estimations to make performance-power trade-off

© ARM 2017 129

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Enable Power Modelling in gem5

 configs/example/arm/fs_power.py

 dyn = "voltage * (2 * ipc + 3 * 0.000000001 *

dcache.overall_misses / sim_seconds)”

 st = "4 * temp"

 gem5.opt configs/example/arm/fs_power.py \

--caches --kernel vmlinux

 grep pm0.dynamic_power m5out/stats.txt

 system.bigCluster.cpus.power_model.pm0.dynamic_power 0.057501 #Dynamic power for

this object (Watts)

 ...

© ARM 2017 130

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

And it wiggles!

© ARM 2017 131

Text 54pt sentence case KVM
Andreas

© ARM 2017 132

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Detailed

0.1 MIPS

Fast

1 MIPS

Native

3,000 MIPS

Problem: Simulation is Slow

~1 year / benchmark

in detailed mode

<1 hour per SPEC

benchmark on

native HW

SPEC CPU2006 runtime

© ARM 2017 133

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

A KVM-Based CPU Model

Can switch between modes during simulation

KVM

~90% of

native

Hardware CPU via virtualization

• Only simulates IO devices

• No/Limited timing

Detailed

~0.1 MIPS

Detailed: Pipeline simulator (timing, queues, speculation…)

• caches, TLBs, branch predictor

Fast

~1 MIPS

Fast: 1 instruction per cycle

• caches, TLBs, branch predictor

Simulation

Modes

© ARM 2017 134

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Current state of KVM on ARM

 Requirements

 Server-class ARMv8-based system

 RAM: 4+ GiB

 Host system and kernel with KVM support

 Known-working:

 Running full-systems with simulated devices

 Able to boot Android N

 Limited-support:

 Multiple CPUs

 Graphics, KMI

 CPU switching

 Checkpointing

Already in use despite

known limitations

© ARM 2017 135

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

How Do I Use KVM?

 Supported by config/example/fs.py and config/example/arm/fs_bigLITTLE.py

 Only the bL configuration supports multi-core!

 Behaves like a “normal” CPU model

./build/ARM/gem5.opt \

configs/example/arm/fs_bigLITTLE.py

--cpu-type kvm \

--kernel vmlinux --disk my_disk.img \

--big-cpus 1 --little-cpus 0 \

--dtb

$GEM5/system/arm/dt/armv8_gem5_v1_1cpu.dtb

© ARM 2017 136

Text 54pt sentence case Demo

© ARM 2017 137

Text 54pt sentence case Methodology
William

© ARM 2017 138

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

SimPoints
 Generate wieldable, representative slices of full benchmarks

 Terminology:

 Intervals – slices in time, sampling granularity (e.g. 10K instructions)

 Phases – intervals with similar behavior that often recur periodically

 Output from SimPoint analysis are slices and weights for each slice (choose a clustering

within 5% of CPI of full run)

 Gem5 is instrumented to capture SimPoints

 Run one time to analyze basic block vectors

 Second time generates gem5 checkpoints at every identified phase

 Runs can be repeated with different experimental configuration

Time (Intervals)
1 2 3 4 5

IP
C

A BA A B

gzip gcc

© ARM 2017 139

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 Find the most important parameters from a large data set automatically

 How to describe “most important” using math?

 High variance

 How do we represent our data so that the most important features can be extracted easily?

 Change of basis

 Can infer similarities and dissimilarities of workloads

 Based on distance on projected component space

Principal Component Analysis (PCA)

PCA reveals the internal structure of the data that

best explains the variance in the data!

© ARM 2017 140

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 Android workloads

stress the Instruction-

side aspects of a system

 The popular SPEC

benchmarks primarily

stress only the Data-

side

 Very limited coverage of

full mobile systems’

behavior

Studying Complex Software is Important

andebench

angrybirds

bbench

caffeinemark

rlbench

wps

-6

-4

-2

0

2

4

6

8

-4 -2 0 2 4 6 8 10 12

Android

specInt2000Ref

specInt2006Ref

specFp2000Ref

specFp2006Ref

181_mcf

429_mcf

471_omnetpp

483_xalancbmk

433_milc

179_art1/2

200_sixtrack

470_lbm

400_perlbench

253_perlbmk
252_eon

450_soplex

445_gobmk

172_mgrid

183_equake

473_astar

403_gcc

X-axis (PC1) key components:

CPI, DTLB MPKI, L2 MPKI, L1-D MPKI,

IQ_full_events, …

Y-axis (PC2) key

components:

L1-I MPKI, ITLB MPKI, BP

MPKI, Inst mix, …

Principal Components of SPEC and Android

Workloads

© ARM 2017 141

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Fractional Factorial Designs

 Balanced experiment distribution

 Identify important factors

 2N-M experiments << 2N

DL1 Lat DL1

Size

DL1

Assoc

- - -

+ - +

- + +

+ + -

D
L
1
 A

ss
o
c

--- +--

-+-

-++ +++

--+

++-

+-+

DL1 Lat

DL1 Lat DL1

Size

DL1

Assoc

- - -

+ - -

- + -

- - +

 Looks for parameters where the average ‘+’ run is

very different from ‘-’

 Experiments are tolerant to noise

 Does not identify what are the best options

 Narrows design space to what matters most

© ARM 2017 142

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Methodology

 Objective: To find the ideal heterogeneous system for a given

set of workloads and hardware parameters

 Characterize and cluster workload phases

 Cluster based on performance sensitivity to various hardware

parameters

 Selectively enable or disable hardware parameters per cluster

of similar workload phases to improve their efficiency

Characterization

Workloads

Clustering

based on Similar

Characteristics

Identification of ideal H/W

config per core type

Evaluation of

Heterogeneous Systems

Optimal Systems

Characterization

© ARM 2017 143

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

 300x speedup of our simulations

 Good correlation to full runs for statistics of interest

 Identifies unique phases of software behavior

Characterization Methodology

AutoGUI

SimPoints

PCA

Fractional

Factorial

Workloads

Reduced Detailed

Simulation

Characterization

Full Run SimPoint Run

 Record and deterministically playback

GUI interactions

andebench

angrybirds

bbench

caffeinemark

rlbench

wps

-6

-4

-2

0

2

4

6

8

-4 -2 0 2 4 6 8 10 12

Android

specInt2000Ref

specInt2006Ref

specFp2000Ref

specFp2006Ref

 Quickly and automatically expose

differences in elements of a large data

set

 Compare and contrast phase behavior
 Perform high-level coverage architectural

exploration using a limited set of experiments

© ARM 2017 144

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Characterization Methodology

Characterization

Comprehensive

Characterization

Tractable Simulation

AutoGUI

SimPoints

PCA

Fractional

Factorial

Workloads

Reduced Detailed

Simulation

Repeatable

Simulation

Reduced

Simulation Time

Guided

Parameter Selection

Reduced # of

Experiments

Full Runs for

Correlations

Key Phase

Identification

Workload

Comparison

Phase

Comparison

Sensitivity

Analysis

Sunwoo, et al. “A Structured Approach to the Simulation, Analysis and Characterization of Smartphone Applications.”

Published at IISWC 2013.

© ARM 2017

How to Contribute to gem5

Andreas Sandberg

© ARM 2017 147

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Prerequisites

 gem5’s is distributed under a 3-clause BSD license

 See LICENSE in the repository

 New code must have this license as well!

 It’s your responsibility to:

 Ensure that your contribution is covered by the license.

 Ensure that you have the right to submit the code

 Ensure that the right copyright notices are in place

© ARM 2017 148

Text 54pt sentence case Best practice
“How to operate your friendly reviewer”

© ARM 2017 149

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

How to structure your change

 What characterizes a good change?

 Small: Smaller changes are easier to review and understand.

 Well-defined: One commit == logical change

 No unrelated changes: Don’t sneak bug fixes into feature commits

 Descriptive commit message

 Always use your real name and email in the commit meta data

 What characterizes a change that makes reviewers cringe?

 Multiple changes going into the same commit “various bug fixes in Foo”

 Large changes that could have been broken into incremental changes

 Poorly written commit messages

© ARM 2017 150

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

The structure of a commit message

python: Move native wrappers to the _m5 namespace

Swig wrappers for native objects currently share the _m5.internal name

space with Python code. This is undesirable if we ever want to switch

from Swig to some other framework for native binding (e.g., PyBind11

or Boost::Python). This changeset moves all of such wrappers to the

_m5 namespace, which is now reserved for native code.

Change-Id: I2d2bc12dbc05b57b7c5a75f072e08124413d77f3

Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>

Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>

Reviewed-by: Jason Lowe-Power <jason@lowepower.com>

Summary:

Body:

Meta data:

© ARM 2017 151

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Commit message: Summary line

 Short summary of your change (max 65 characters)

 Think of it as a subject in an email

 Should uniquely identify your change

 Typically the first thing a potential reviewer sees

 Sometimes the only information shown about a change

 Keywords used to identify affected components

 See the wiki for details

python: Move native wrappers to the _m5 namespaceSummary:

© ARM 2017 152

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Commit message: Body

 Should describe your change in detail – think of it as documentation

 Reviewers will read this before they see any code

 Describe what the change does and why

 Not necessarily how, that should be clear from the code

 Describe any implementation trade-offs

 Describe known limitations

Swig wrappers for native objects currently share the _m5.internal name

space with Python code. ...

Body:

© ARM 2017 153

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Commit message: Metadata

 Change-Id: Unique ID used by Gerrit to identify the change (generated)

 Signed-off-by: It’s complicated…

 Reviewed-by: Use this to acknowledge reviewers (generated by Gerrit)

 Reviewed-on: Link to review request (generated by Gerrit)

 Reported-by: Use this to acknowledge users that report bugs

 Tested-by: Can be used to acknowledge testers

Change-Id: I2d2bc12dbc05b57b7c5a75f072e08124413d77f3

Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>

Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>

Reviewed-by: Jason Lowe-Power <jason@lowepower.com>

Meta data:

© ARM 2017 154

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Developer Certificate of Origin

 By making a contribution to this project, I certify that:

a) The contribution was … by me and I have the right to submit it…; or

b) … is based upon previous work that … is covered under an appropriate open source

license and I have the right under that license to submit that work with modifications… ; or

c) The contribution was provided directly to me by some other person who certified (a), (b)

or (c) and I have not modified it.

d) I understand and agree that this project and the contribution are public and that a record

of the contribution … is maintained indefinitely and may be redistributed…

 See the https://developercertificate.org/ for the full version.

 A Signed-off-by: tag indicates that you understand and agree to the DCO.

https://developercertificate.org/

© ARM 2017 155

Text 54pt sentence case Submitting Code:
How to use the new Gerrit-based flow

© ARM 2017 156

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Code submission flow

Post change for review

Reviewers

happy?
Update change

Wait for reviews

DoneCommit change

No

Yes

Apply stick to

reviewer

© ARM 2017 157

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

The job of a reviewer

 Evaluate technical aspects

 Is it doing what it says in the commit message?

 Is a technically sound implementation?

 Evaluate implementation aspects

 Is the commit message describing the change?

 Is it following the style guidelines?

 Legal aspects

 Patch author’s responsibility, but reviewers should look out for obvious issues.

You are the reviewers!

© ARM 2017 158

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

gem5 is changing

 Recently switched from Mercurial to Git

 Canonical repository on http://gem5.googlesource.com

 Mirror on GitHub: http://github.com/gem5

 Recently switched from ReviewBoard to Gerrit

 Automates code submission

 Tightly integrated with git

 Google (e.g., GMail) accounts for authentication

 Will integrate support automatic testing

http://gem5.googlesource.com/
http://github.com/gem5

© ARM 2017 161

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Setting up gerrit & git

 Prerequisites

 Google account registered with the email

address you use for contributions

 Where to start:

 http://gem5.googlesource.com

 Git authentication

 Required to push changes for review

 Uses https unlike most other installations

 Requires an authentication cookie

http://gem5.googlesource.com/

© ARM 2017 162

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Posting a change for review

 Push to a “magical” git ref:

 refs/for/<branch>: Create a review request

 refs/drafts/<branch>: Create a draft review

 Pushes either updates an existing review or creates a new one

 More advanced usage described in the Gerrit manual

 Tips and tricks:

 Make sure that you assign one or more reviewers to the change

 Assign a topic name to related changes

© ARM 2017 163

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Simple Example

$ git clone https://gem5.googlesource.com/public/gem5

<hack hack hack>

$ git add -i

$ git commit -m “test commit”

$ git push origin HEAD:refs/for/master

…

remote: New Changes:

remote: https://gem5-review.googlesource.com/2160 Test commit

remote:

To https://gem5.googlesource.com/public/gem5

* [new branch] HEAD -> refs/for/master

Create a

local clone

Commit

your changes

Push changes

for review

https://gem5.googlesource.com/public/testing

© ARM 2017 164

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

https://gem5-review.googlesource.com/2160

© ARM 2017 165

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

https://gem5-review.googlesource.com/2160

© ARM 2017 166

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

https://gem5-review.googlesource.com/2160

© ARM 2017 167

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Reviewing code in Gerrit

 Changes can only be submitted if they have been:

 Reviewed

 Accepted by a maintainer

 Passed automatic testing

 Gerrit uses labels to enforce these policies:

 Code-Review: Normal code reviews, anyone can use these.

 Maintainer: Only available to maintainers, required for submission.

 Verified: Used by CI system to accept/reject depending on test outcomes

 Style-Check: Automatic style checking

 Maintainers can override labels if they are obviously wrong

© ARM 2017 168

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Code submission flow

Post change for review

Reviewers

happy?
Update change

Wait for reviews

Done

Yes

Commit change

Maintainer

happy?

No

Yes

No

© ARM 2017 169

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

How to review code

 Start with the commit message

 Does it make sense?

 Is it a change that makes sense in gem5? Why/Why not?

 Look at the code

 Is it solving the problem in the description?

 Is the implementation technically sound? Are there obvious bugs?

 Comment on the code and submit a review score

 -2: Don’t submit under any circumstances (blocks submission)

 …

 +2: Looks good, approved!

 Be polite and kind

 Developers and reviewers are people too!

© ARM 2017 170

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Further information - gem5 related papers from ARM Research

 Sunwoo, Dam, et al. "A structured approach to the simulation, analysis and
characterization of smartphone applications." IISWC'13

 Gutierrez, Anthony, et al. "Sources of error in full-system simulation." ISPASS'14

 Hansson, Andreas, et al. "Simulating DRAM controllers for future system architecture
exploration." ISPASS'14

 De Jong, Rene, and Andreas Sandberg. "NoMali: Simulating a realistic graphics driver
stack using a stub GPU." ISPASS'16

 Rusitoru, Roxana. "ARMv8 micro-architectural design space exploration for high
performance computing using fractional factorial." PMBS'15

 Vasileios Spiliopoulos, et.al.“Introducing DVFS-Management in a Full-System
Simulator.” MASCOTS '13

 Matthew J. Walker, et al. “Accurate and Stable Run-Time Power Modeling for Mobile
and Embedded CPUs.” IEEE Trans. on CAD of Integrated Circuits and Systems 36’2017

https://twitter.com/intent/tweet?url=http://dx.doi.org/10.1109/TCAD.2016.2562920&text="Accurate+and+Stable+Run-Time+Power+Modeling+for+Mobile+and+Embedded+CPUs."&hashtags=dblp&related=dblp_org

© ARM 2017 171

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Further information - gem5 related papers from ARM Research

 Jagtap, Radhika, et al. "Elastic traces for fast and accurate system performance

exploration." ISPASS’16

 Mohammad Alian, et al. “dist-gem5: Distributed simulation of computer clusters.”

ISPASS’17

https://twitter.com/intent/tweet?url=http://dx.doi.org/10.1109/TCAD.2016.2562920&text="Accurate+and+Stable+Run-Time+Power+Modeling+for+Mobile+and+Embedded+CPUs."&hashtags=dblp&related=dblp_org

11-13 September 2017

Robinson College, Cambridge, UK

Submission deadline - 30 April 2017

Early-bird discount ends - 30 June 2017

